高三數(shù)學(xué)知識點總結(jié)
在我們上學(xué)期間,大家對知識點應(yīng)該都不陌生吧?知識點也可以理解為考試時會涉及到的知識,也就是大綱的分支。你知道哪些知識點是真正對我們有幫助的嗎?以下是小編為大家收集的高三數(shù)學(xué)知識點總結(jié),歡迎大家借鑒與參考,希望對大家有所幫助。
高三數(shù)學(xué)知識點總結(jié)1
復(fù)數(shù)的概念:
形如a+bi(a,b∈R)的數(shù)叫復(fù)數(shù),其中i叫做虛數(shù)單位。全體復(fù)數(shù)所成的集合叫做復(fù)數(shù)集,用字母C表示。
復(fù)數(shù)的表示:
復(fù)數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復(fù)數(shù)的代數(shù)形式,其中a叫復(fù)數(shù)的實部,b叫復(fù)數(shù)的虛部。
復(fù)數(shù)的幾何意義:
(1)復(fù)平面、實軸、虛軸:
點Z的橫坐標(biāo)是a,縱坐標(biāo)是b,復(fù)數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
(2)復(fù)數(shù)的幾何意義:復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點所成的集合是一一對應(yīng)關(guān)系,即
這是因為,每一個復(fù)數(shù)有復(fù)平面內(nèi)惟一的一個點和它對應(yīng);反過來,復(fù)平面內(nèi)的每一個點,有惟一的一個復(fù)數(shù)和它對應(yīng)。
這就是復(fù)數(shù)的一種幾何意義,也就是復(fù)數(shù)的另一種表示方法,即幾何表示方法。
復(fù)數(shù)的模:
復(fù)數(shù)z=a+bi(a、b∈R)在復(fù)平面上對應(yīng)的點Z(a,b)到原點的距離叫復(fù)數(shù)的模,記為|Z|,即|Z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實數(shù)可以與它進(jìn)行四則運算,進(jìn)行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復(fù)數(shù)模的性質(zhì):
復(fù)數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:
對于復(fù)數(shù)a+bi(a、b∈R),當(dāng)且僅當(dāng)b=0時,復(fù)數(shù)a+bi(a、b∈R)是實數(shù)a;當(dāng)b≠0時,復(fù)數(shù)z=a+bi叫做虛數(shù);當(dāng)a=0且b≠0時,z=bi叫做純虛數(shù);當(dāng)且僅當(dāng)a=b=0時,z就是實數(shù)0。
高三數(shù)學(xué)知識點總結(jié)2
1、三類角的求法:
、僬页龌蜃鞒鲇嘘P(guān)的角。
②證明其符合定義,并指出所求作的角。
、塾嬎愦笮。ń庵苯侨切,或用余弦定理)。
2、正棱柱——底面為正多邊形的直棱柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。
正棱錐的計算集中在四個直角三角形中:
3、怎樣判斷直線l與圓C的位置關(guān)系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的“垂徑定理”。
4、對線性規(guī)劃問題:
作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。
高三數(shù)學(xué)知識點總結(jié)3
三角函數(shù)。
注意歸一公式、誘導(dǎo)公式的正確性。
數(shù)列題。
1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;
2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當(dāng)n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單
立體幾何題。
1、證明線面位置關(guān)系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。
概率問題。
1、搞清隨機(jī)試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);
2、搞清是什么概率模型,套用哪個公式;
3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4、求概率時,正難則反(根據(jù)p1+p2+……+pn=1);
5、注意計數(shù)時利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
正弦、余弦典型例題。
1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為
2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°
4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。
正弦、余弦解題訣竅。
1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。
2、已知三邊,或兩邊及其夾角用余弦定理
3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。
高三數(shù)學(xué)知識點總結(jié)4
1、圓柱體:
表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:
表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高)
3、正方體
a—邊長,S=6a2,V=a3
4、長方體
a—長,b—寬,c—高S=2(ab+ac+bc)V=abc
5、棱柱
S—底面積h—高V=Sh
6、棱錐
S—底面積h—高V=Sh/3
7、棱臺
S1和S2—上、下底面積h—高V=h[S1+S2+(S1S2)^1/2]/3
8、擬柱體
S1—上底面積,S2—下底面積,S0—中截面積
h—高,V=h(S1+S2+4S0)/6
9、圓柱
r—底半徑,h—高,C—底面周長
S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr
S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱
R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)
11、直圓錐
r—底半徑h—高V=πr^2h/3
12、圓臺
r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/3
13、球
r—半徑d—直徑V=4/3πr^3=πd^3/6
14、球缺
h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3
15、球臺
r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體
R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑
V=2π2Rr2=π2Dd2/4
17、桶狀體
D—桶腹直徑d—桶底直徑h—桶高
V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
高三數(shù)學(xué)知識點總結(jié)5
基本事件的定義:
一次試驗連同其中可能出現(xiàn)的每一個結(jié)果稱為一個基本事件。
等可能基本事件:
若在一次試驗中,每個基本事件發(fā)生的可能性都相同,則稱這些基本事件為等可能基本事件。
古典概型:
如果一個隨機(jī)試驗滿足:(1)試驗中所有可能出現(xiàn)的基本事件只有有限個;
(2)每個基本事件的發(fā)生都是等可能的;
那么,我們稱這個隨機(jī)試驗的概率模型為古典概型.
古典概型的概率:
如果一次試驗的等可能事件有n個,考試技巧,那么,每個等可能基本事件發(fā)生的概率都是;如果某個事件A包含了其中m個等可能基本事件,那么事件A發(fā)生的概率為。
古典概型解題步驟:
(1)閱讀題目,搜集信息;
(2)判斷是否是等可能事件,并用字母表示事件;
(3)求出基本事件總數(shù)n和事件A所包含的結(jié)果數(shù)m;
(4)用公式求出概率并下結(jié)論。
求古典概型的概率的關(guān)鍵:
求古典概型的概率的關(guān)鍵是如何確定基本事件總數(shù)及事件A包含的基本事件的個數(shù)。
高三數(shù)學(xué)知識點總結(jié)6
一、平面的基本性質(zhì)與推論
1、平面的基本性質(zhì):
公理1如果一條直線的兩點在一個平面內(nèi),那么這條直線在這個平面內(nèi);
公理2過不在一條直線上的三點,有且只有一個平面;
公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。
2、空間點、直線、平面之間的位置關(guān)系:
直線與直線—平行、相交、異面;
直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);
平面與平面—平行、相交。
3、異面直線:
平面外一點A與平面一點B的連線和平面內(nèi)不經(jīng)過點B的直線是異面直線(判定);
所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補角);
兩條直線不是異面直線,則兩條直線平行或相交(反證);
異面直線不同在任何一個平面內(nèi)。
求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角
二、空間中的平行關(guān)系
1、直線與平面平行(核心)
定義:直線和平面沒有公共點
判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)
性質(zhì):一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行
2、平面與平面平行
定義:兩個平面沒有公共點
判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行
性質(zhì):兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。
3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線
三、空間中的垂直關(guān)系
1、直線與平面垂直
定義:直線與平面內(nèi)任意一條直線都垂直
判定:如果一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直
性質(zhì):垂直于同一直線的兩平面平行
推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面
直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度
2、平面與平面垂直
定義:兩個平面所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內(nèi)分別作垂直于棱的兩條射線所成的角)
判定:一個平面過另一個平面的垂線,則這兩個平面垂直
性質(zhì):兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直
高三數(shù)學(xué)知識點總結(jié)7
集合的分類:
。1)按元素屬性分類,如點集,數(shù)集。
。2)按元素的個數(shù)多少,分為有/無限集
關(guān)于集合的概念:
。1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
。2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。
(3)無序性:判斷一些對象時候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標(biāo)準(zhǔn)。
高三數(shù)學(xué)知識點總結(jié)8
一、簡單隨機(jī)抽樣
設(shè)一個總體的個體數(shù)為N,如果通過逐個抽取的方法從中抽取一個樣本,且每次抽取時,各個體被抽到的概率相等,就稱這樣的抽樣為簡單隨機(jī)抽樣。一般地如果用簡單隨機(jī)抽樣從個體數(shù)為N的總體中抽取一個容量為n的樣本那么每個個體被抽到的概率等于n/N.常用的簡單隨機(jī)抽樣方法有:抽簽法、隨機(jī)數(shù)法。
1.抽簽法
一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本。
2.隨機(jī)數(shù)法
隨機(jī)抽樣中,另一個經(jīng)常被采用的方法是隨機(jī)數(shù)法,即利用隨機(jī)數(shù)表、隨機(jī)數(shù)骰子或計算機(jī)產(chǎn)生的隨機(jī)數(shù)進(jìn)行抽樣。
二、活用隨機(jī)抽樣
系統(tǒng)抽樣的最基本特征是“等距性”,每組內(nèi)所抽取的號碼需要依據(jù)第一組抽取的號碼和組距是唯一確定,每組抽取樣本的號碼依次構(gòu)成一個以第一組抽取的號碼m為首項,組距d為公差的等差數(shù)列{an},第k組抽取樣本的號碼,ak=m+(k-1)d,如本題中根據(jù)第一組的樣本號碼和組距,可得第k組抽取號碼應(yīng)該為9+30x(k-1)
三、系統(tǒng)抽樣
當(dāng)總體中的個體數(shù)較多時,采用簡單隨機(jī)抽樣顯得較為費事,這時,可將總體分成均衡的幾個部分,然后按照預(yù)先定出的規(guī)則,從每一部分抽取一個個體,得到所需要的樣本,這種抽樣叫做系統(tǒng)抽樣。
四、分層抽樣
當(dāng)已知總體有差異明顯的幾部分組成時,為了使樣本更充分地反映總體的情況,常常將總體分為幾個部分,然后按照各個部分所占比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分層的各部分叫做層
高三數(shù)學(xué)知識點總結(jié)9
數(shù)列基本公式:
1、一般數(shù)列的通項an與前n項和Sn的關(guān)系:an=
2、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當(dāng)d≠0時,an是關(guān)于n的一次式;當(dāng)d=0時,an是一個常數(shù)。
3、等差數(shù)列的前n項和公式:
Sn=
Sn=
Sn=
當(dāng)d≠0時,Sn是關(guān)于n的二次式且常數(shù)項為0;當(dāng)d=0時(a1≠0),Sn=na1是關(guān)于n的正比例式。
4、等比數(shù)列的通項公式: an= a1qn-1an= akqn-k
(其中a1為首項、ak為已知的第k項,an≠0)
5、等比數(shù)列的前n項和公式:當(dāng)q=1時,Sn=n a1 (是關(guān)于n的正比例式);
當(dāng)q≠1時,Sn=
Sn=
高三數(shù)學(xué)知識點總結(jié)10
。ㄒ唬⿲(dǎo)數(shù)第一定義
設(shè)函數(shù)y = f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0 + △x也在該鄰域內(nèi))時,相應(yīng)地函數(shù)取得增量△y = f(x0 + △x)— f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y = f(x)在點x0處的導(dǎo)數(shù)記為f(x0),即導(dǎo)數(shù)第一定義
(二)導(dǎo)數(shù)第二定義
設(shè)函數(shù)y = f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x — x0也在該鄰域內(nèi))時,相應(yīng)地函數(shù)變化△y = f(x)— f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y = f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y = f(x)在點x0處的導(dǎo)數(shù)記為f(x0),即導(dǎo)數(shù)第二定義
。ㄈ⿲(dǎo)函數(shù)與導(dǎo)數(shù)
如果函數(shù)y = f(x)在開區(qū)間I內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時函數(shù)y = f(x)對于區(qū)間I內(nèi)的每一個確定的x值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y = f(x)的導(dǎo)函數(shù),記作y,f(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。
。ㄋ模﹩握{(diào)性及其應(yīng)用
1。利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的一般步驟
(1)求f¢(x)
。2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2。用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟
。1)求f¢(x)
。2)f¢(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間
高三數(shù)學(xué)知識點總結(jié)11
1、圓的定義
平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(x-a)^2+(y-b)^2=r^2
。1)標(biāo)準(zhǔn)方程,圓心(a,b),半徑為r;
。2)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。
3、直線與圓的位置關(guān)系
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
。1)設(shè)直線,圓,圓心到l的距離為,則有;;
。2)過圓外一點的切線:①k不存在,驗證是否成立,②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
高三數(shù)學(xué)知識點總結(jié)12
NO.1柱、錐、臺、球的結(jié)構(gòu)特征
棱柱
定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱。
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
棱錐
定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點字母,如五棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。
棱臺
定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點字母,如五棱臺
幾何特征:
、偕舷碌酌媸窍嗨频钠叫卸噙呅
②側(cè)面是梯形
、蹅(cè)棱交于原棱錐的頂點
圓柱
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。
幾何特征:
①底面是全等的圓;
、谀妇與軸平行;
、圯S與底面圓的半徑垂直;
、軅(cè)面展開圖是一個矩形。
圓錐
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。
幾何特征:
①底面是一個圓;
、谀妇交于圓錐的頂點;
、蹅(cè)面展開圖是一個扇形。
圓臺
定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:
、偕舷碌酌媸莾蓚圓;
、趥(cè)面母線交于原圓錐的頂點;
③側(cè)面展開圖是一個弓形。
球體
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:
、偾虻慕孛媸菆A;
②球面上任意一點到球心的距離等于半徑。
NO.2空間幾何體的三視圖
定義三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
高三數(shù)學(xué)知識點總結(jié)13
1.定義:
用符號〉,=,〈號連接的式子叫不等式。
2.性質(zhì):
、俨坏仁降膬蛇叾技由匣驕p去同一個整式,不等號方向不變。
、诓坏仁降膬蛇叾汲艘曰蛘叱砸粋正數(shù),不等號方向不變。
③不等式的兩邊都乘以或除以同一個負(fù)數(shù),不等號方向相反。
3.分類:
、僖辉淮尾坏仁剑鹤笥覂蛇叾际钦,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
②一元一次不等式組:
a.關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
高三數(shù)學(xué)知識點總結(jié)14
1、不等式及其解集
用“<”或“>”號表示大小關(guān)系的式子叫做不等式。
使不等式成立的未知數(shù)的值叫做不等式的解。
能使不等式成立的未知數(shù)的取值范圍,叫做不等式解的集合,簡稱解集。
含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。
2、不等式的性質(zhì)
不等式有以下性質(zhì):
不等式的性質(zhì)1不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變。
不等式的性質(zhì)2不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變。
不等式的性質(zhì)3不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變。
3、實際問題與一元一次不等式
解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa)的形式。
4、一元一次不等式組
把兩個不等式合起來,就組成了一個一元一次不等式組。
幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。
對于具有多種不等關(guān)系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。
高三數(shù)學(xué)知識點總結(jié)15
1.不等式的定義:
a-bb, a-b=0a=b, a-b0a
、 其實質(zhì)是運用實數(shù)運算來定義兩個實數(shù)的大小關(guān)系。它是本章的基礎(chǔ),也是證明不等式與解不等式的主要依據(jù)。
、诳梢越Y(jié)合函數(shù)單調(diào)性的證明這個熟悉的知識背景,來認(rèn)識作差法比大小的理論基礎(chǔ)是不等式的性質(zhì)。
作差后,為判斷差的符號,需要分解因式,以便使用實數(shù)運算的符號法則。
2.不等式的性質(zhì):
、 不等式的性質(zhì)可分為不等式基本性質(zhì)和不等式運算性質(zhì)兩部分。
不等式基本性質(zhì)有:
(1) abb
(2) acac (傳遞性)
(3) ab+c (cR)
(4) c0時,abc
c0時,abac
3.運算性質(zhì)有:
(1) ada+cb+d。
(2) a0, c0acbd。
(3) a0anbn (nN, n1)。
(4) a0N, n1)。
應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:和即推出關(guān)系和等價關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。
4. 關(guān)于不等式的性質(zhì)的考察,主要有以下三類問題:
(1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。
(2)利用不等式的性質(zhì)及實數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實數(shù)值的大小。
(3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。
高三數(shù)學(xué)知識點總結(jié)16
不等式
用小于號或大于號表示大小關(guān)系的式子,叫做不等式(inequality)。
使不等式成立的未知數(shù)的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集(solution set)。
含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性質(zhì):
不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變。
不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變。
三角形中任意兩邊之差小于第三邊。
三角形中任意兩邊之和大于第三邊。
一元一次不等式組
把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組。
高三數(shù)學(xué)知識點總結(jié)17
一、一元一次不等式的解法:
一元一次不等式的解法與一元一次方程的解法類似,其步驟為:
1、去分母;
2、去括號;
3、移項;
4、合并同類項;
5、系數(shù)化為1
二、不等式的基本性質(zhì):
1、不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;
2、不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;
3、不等式的兩邊都乘以(或除以)同一個負(fù)數(shù),不等號的方向改變。
三、不等式的解:
能使不等式成立的未知數(shù)的值,叫做不等式的解。
四、不等式的解集:
一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
五、解不等式的依據(jù)不等式的基本性質(zhì):
性質(zhì)1:不等式兩邊加上(或減去)同一個數(shù)(或式子),不等號的方向不變,
性質(zhì)2:不等式兩邊乘以(或除以)同一個正數(shù),不等號的方向不變,
性質(zhì)3:不等式兩邊乘以(或除以)同一個負(fù)數(shù),不等號的方向改變,
【高三數(shù)學(xué)知識點總結(jié)】相關(guān)文章:
高三數(shù)學(xué)重要知識點總結(jié)12-28
高三數(shù)學(xué)高考知識點總結(jié)09-24
高三數(shù)學(xué)復(fù)習(xí)知識點總結(jié)12-08
高三數(shù)學(xué)知識點總結(jié)大全03-22
高三數(shù)學(xué)重點知識點總結(jié)04-25
高三數(shù)學(xué)知識點總結(jié)歸納09-08