男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

數(shù)學基礎知識點總結(jié)

時間:2023-08-23 11:50:17 宗澤 知識點總結(jié) 我要投稿

數(shù)學基礎知識點總結(jié)

  總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導性結(jié)論的書面材料,寫總結(jié)有利于我們學習和工作能力的提高,不妨讓我們認真地完成總結(jié)吧。那么總結(jié)有什么格式呢?以下是小編為大家收集的數(shù)學基礎知識點總結(jié),僅供參考,大家一起來看看吧。

數(shù)學基礎知識點總結(jié)

  數(shù)學基礎知識點總結(jié) 1

  1、圓柱體:

  表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:

  表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、正方體

  a—邊長,S=6a2,V=a3

  4、長方體

  a—長,b—寬,c—高S=2(ab+ac+bc)V=abc

  5、棱柱

  S—底面積h—高V=Sh

  6、棱錐

  S—底面積h—高V=Sh/3

  7、棱臺

  S1和S2—上、下底面積h—高V=h[S1+S2+(S1S2)^1/2]/3

  8、擬柱體

  S1—上底面積,S2—下底面積,S0—中截面積

  h—高,V=h(S1+S2+4S0)/6

  9、圓柱

  r—底半徑,h—高,C—底面周長

  S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr

  S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱

  R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)

  11、直圓錐

  r—底半徑h—高V=πr^2h/3

  12、圓臺

  r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/3

  13、球

  r—半徑d—直徑V=4/3πr^3=πd^3/6

  14、球缺

  h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3

  15、球臺

  r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6

  16、圓環(huán)體

  R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑

  V=2π2Rr2=π2Dd2/4

  17、桶狀體

  D—桶腹直徑d—桶底直徑h—桶高

  V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

  V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

  數(shù)學基礎知識點總結(jié) 2

  等腰三角形

  1、性質(zhì):等腰三角形的兩個底角相等(等邊對等角)。

  2、判定:有兩個角相等的三角形是等腰三角形(等角對等邊)。

  3、等邊三角形的性質(zhì)及判定定理

  性質(zhì)定理:等邊三角形的三個角都相等,并且每個角都等于;等邊三角形是軸對稱圖形,有條對稱軸。

  判定定理:

  (1)有一個角是60°的等腰三角形是等邊三角形;

 。2)三個角都相等的三角形是等邊三角形。

  直角三角形

  1、勾股定理及其逆定理

  定理:直角三角形的兩條直角邊的等于的平方。

  逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是。

  2、含30°的直角三角形的邊的性質(zhì)

  定理:在直角三角形中,如果一個銳角等于30°,那么等于的一半。

  3、直角三角形斜邊上的中線等于的一半。

  要點詮釋:

 、俟垂啥ɡ淼'逆定理在語言敘述的時候一定要注意,不能說成“兩條邊的平方和等于斜邊的平方”,應該說成“三角形兩邊的平方和等于第三邊的平方”。

  ②直角三角形的全等判定方法,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。

  線段的垂直平分線

  1、線段垂直平分線的性質(zhì)及判定

  性質(zhì):線段垂直平分線上的點到的距離相等。

  判定:到一條線段兩個端點距離相等的點在這條線段的

  2、三角形三邊的垂直平分線的性質(zhì)

  三角形三條邊的垂直平分線相交于一點,并且這一點到三個頂點的距離相等。

  角平分線

  1、角平分線的性質(zhì)及判定定理

  性質(zhì):角平分線上的點到的距離相等;

  判定:在一個角的內(nèi)部,且到角的兩邊的距離相等的點,在這個角的平分線上。

  2、三角形三條角平分線的性質(zhì)定理

  性質(zhì):三角形的三條角平分線相交于一點,并且這一點到三條邊的距離相等。這個點叫內(nèi)心。

  數(shù)學基礎知識點總結(jié) 3

  考點一:集合與簡易邏輯

  集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關(guān)系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學解題過程和邏輯推理。

  考點二:函數(shù)與導數(shù)

  函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應用等,分值約為10分,解答題與導數(shù)交匯在一起考查函數(shù)的性質(zhì)。導數(shù)部分一方面考查導數(shù)的運算與導數(shù)的幾何意義,另一方面考查導數(shù)的簡單應用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導數(shù)的綜合應用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的.個數(shù)問題、不等式的證明等問題。

  考點三:三角函數(shù)與平面向量

  一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應用。向量重點考查平面向量數(shù)量積的概念及應用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點”題型、

  考點四:數(shù)列與不等式

  不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導數(shù)等解答題中進行考查、在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目、

  考點五:立體幾何與空間向量

  一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。

  考點六:解析幾何

  一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。

  考點七:算法復數(shù)推理與證明

  高考對算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”、考查的熱點是流程圖的識別與算法語言的閱讀理解、算法與數(shù)列知識的網(wǎng)絡交匯命題是考查的主流、復數(shù)考查的重點是復數(shù)的有關(guān)概念、復數(shù)的代數(shù)形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大、推理證明部分命題的方向主要會在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數(shù)學歸納法可能作為解答題的一小問。

  數(shù)學基礎知識點總結(jié) 4

  一次函數(shù)

  一、正比例函數(shù)與一次函數(shù)的概念:

  一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。

  一般地,形如y=kx+b(k,b為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù).

  當b=0時,y=kx+b即為y=kx,所以正比例函數(shù),是一次函數(shù)的特例.

  二、正比例函數(shù)的圖象與性質(zhì):

  (1)圖象:正比例函數(shù)y=kx(k是常數(shù),k≠0))的圖象是經(jīng)過原點的一條直線,我們稱它為直線y=kx。

  (2)性質(zhì):當k>0時,直線y=kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當k0,b>0圖像經(jīng)過一、二、三象限;

  (2)k>0,b<0圖像經(jīng)過一、三、四象限;

  (3)k>0,b=0圖像經(jīng)過一、三象限;

  (4)k<0,b>0圖像經(jīng)過一、二、四象限;

  (5)k<0,b<0圖像經(jīng)過二、三、四象限;

  (6)k<0,b=0圖像經(jīng)過二、四象限。

  一次函數(shù)表達式的確定

  求一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)時,需要由兩個點來確定;求正比例函數(shù)y=kx(k≠0)時,只需一個點即可.

  5.一次函數(shù)與二元一次方程組:

  解方程組

  從“數(shù)”的角度看,自變量(x)為何值時兩個函數(shù)的值相等.并

  求出這個函數(shù)值

  解方程組從“形”的.角度看,確定兩直線交點的坐標.

  數(shù)據(jù)的分析

  數(shù)據(jù)的代表:平均數(shù)、眾數(shù)、中位數(shù)、極差、方差

  數(shù)學基礎知識點總結(jié) 5

  第十一章全等三角形

  1、全等三角形的性質(zhì):全等三角形對應邊相等、對應角相等。

  2、全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。

  3、角平分線的性質(zhì):角平分線平分這個角,角平分線上的點到角兩邊的距離相等

  4、角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點在叫的平分線上。

  5、證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應關(guān)系從已知推導出要證明的問題)。

  第十二章軸對稱

  1、如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。

  2、軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

  3、角平分線上的點到角兩邊距離相等。

  4、線段垂直平分線上的任意一點到線段兩個端點的距離相等。

  5、與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

  6、軸對稱圖形上對應線段相等、對應角相等。

  7、畫一圖形關(guān)于某條直線的軸對稱圖形的步驟:找到關(guān)鍵點,畫出關(guān)鍵點的對應點,按照原圖順序依次連接各點。

  8、點(x,y)關(guān)于x軸對稱的點的坐標為(x,—y)

  點(x,y)關(guān)于y軸對稱的點的坐標為(—x,y)

  點(x,y)關(guān)于原點軸對稱的點的坐標為(—x,—y)

  9、等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)

  等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。

  10、等腰三角形的判定:等角對等邊。

  11、等邊三角形的三個內(nèi)角相等,等于60°,

  12、等邊三角形的判定:三個角都相等的三角形是等腰三角形。

  有一個角是60°的等腰三角形是等邊三角形。

  有兩個角是60°的三角形是等邊三角形。

  13、直角三角形中,30°角所對的直角邊等于斜邊的一半。

  14、直角三角形斜邊上的中線等于斜邊的一半

  第十三章實數(shù)

  ※算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當a≥0時,a才有算術(shù)平方根。

  ※平方根:一般地,如果一個數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。

  ※正數(shù)有兩個平方根(一正一負)它們互為相反數(shù);0只有一個平方根,就是它本身;負數(shù)沒有平方根。

  ※正數(shù)的立方根是正數(shù);0的立方根是0;負數(shù)的立方根是負數(shù)。

  數(shù)a的相反數(shù)是—a,一個正實數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0

  第十四章一次函數(shù)

  1、畫函數(shù)圖象的一般步驟:一、列表(一次函數(shù)只用列出兩個點即可,其他函數(shù)一般需要列出5個以上的點,所列點是自變量與其對應的函數(shù)值),二、描點(在直角坐標系中,以自變量的值為橫坐標,相應函數(shù)的值為縱坐標,描出表格中的個點,一般畫一次函數(shù)只用兩點),三、連線(依次用平滑曲線連接各點)。

  2、根據(jù)題意寫出函數(shù)解析式:關(guān)鍵找到函數(shù)與自變量之間的等量關(guān)系,列出等式,既函數(shù)解析式。

  3、若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數(shù)。

  4、正比列函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過原點(0,0)的一條直線。

  5、正比列函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過原點的直線,當k>0時,直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:k="">0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。

  6、已知兩點坐標求函數(shù)解析式(待定系數(shù)法求函數(shù)解析式):

  把兩點帶入函數(shù)一般式列出方程組

  求出待定系數(shù)

  把待定系數(shù)值再帶入函數(shù)一般式,得到函數(shù)解析式

  7、會從函數(shù)圖象上找到一元一次方程的解(既與x軸的交點坐標橫坐標值),一元一次不等式的解集,二元一次方程組的解(既兩函數(shù)直線交點坐標值)

  第十五章整式的乘除與因式分解

  1、同底數(shù)冪的乘法

  ※同底數(shù)冪的乘法法則:(m,n都是正數(shù))是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:

 、俜▌t使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項或多項式;

  ②指數(shù)是1時,不要誤以為沒有指數(shù);

 、鄄灰獙⑼讛(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;

 、墚斎齻或三個以上同底數(shù)冪相乘時,法則可推廣為(其中m、n、p均為正數(shù));

 、莨竭可以逆用:(m、n均為正整數(shù))

  2、冪的乘方與積的乘方

  ※1、冪的乘方法則:(m,n都是正數(shù))是冪的乘法法則為基礎推導出來的,但兩者不能混淆。

  ※2、底數(shù)有負號時,運算時要注意,底數(shù)是a與(—a)時不是同底,但可以利用乘方法則化成同底,如將(—a)3化成—a3。

  ※3、底數(shù)有時形式不同,但可以化成相同。

  ※4、要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。

  ※5、積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即(n為正整數(shù))。

  ※6、冪的乘方與積乘方法則均可逆向運用。

  3、整式的乘法

  ※(1)單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。

  單項式乘法法則在運用時要注意以下幾點:

  ①積的系數(shù)等于各因式系數(shù)積,先確定符號,再計算絕對值。這時容易出現(xiàn)的錯誤的是,將系數(shù)相乘與指數(shù)相加混淆;

 、谙嗤帜赶喑耍\用同底數(shù)的乘法法則;

  ③只在一個單項式里含有的字母,要連同它的指數(shù)作為積的一個因式;

 、軉雾検匠朔ǚ▌t對于三個以上的單項式相乘同樣適用;

 、輪雾検匠艘詥雾検,結(jié)果仍是一個單項式。

  ※(2)單項式與多項式相乘

  單項式乘以多項式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。

  單項式與多項式相乘時要注意以下幾點:

 、賳雾検脚c多項式相乘,積是一個多項式,其項數(shù)與多項式的項數(shù)相同;

 、谶\算時要注意積的符號,多項式的每一項都包括它前面的符號;

  ③在混合運算時,要注意運算順序。

  ※(3)多項式與多項式相乘

  多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。

  多項式與多項式相乘時要注意以下幾點:

  ①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合并同類項之前,積的項數(shù)應等于原兩個多項式項數(shù)的.積;

 、诙囗検较喑说慕Y(jié)果應注意合并同類項;

 、蹖型粋字母的一次項系數(shù)是1的兩個一次二項式相乘,其二次項系數(shù)為1,一次項系數(shù)等于兩個因式中常數(shù)項的和,常數(shù)項是兩個因式中常數(shù)項的積。對于一次項系數(shù)不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得

  4、平方差公式

  ¤1、平方差公式:兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,

  ※即。

  ¤其結(jié)構(gòu)特征是:

 、俟阶筮吺莾蓚二項式相乘,兩個二項式中第一項相同,第二項互為相反數(shù);

  ②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。

  5、完全平方公式

  ¤1、完全平方公式:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍。

  ¤即;

  ¤口決:首平方,尾平方,2倍乘積在中央;

  ¤2、結(jié)構(gòu)特征:

 、俟阶筮吺嵌検降耐耆椒;

 、诠接疫吂灿腥,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。

  ¤3、在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現(xiàn)這樣的錯誤。

  添括號法則:添正不變號,添負各項變號,去括號法則同樣

  6、同底數(shù)冪的除法

  ※1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0,m、n都是正數(shù),且m>n)。

  ※2、在應用時需要注意以下幾點:

  ①法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0。

 、谌魏尾坏扔0的數(shù)的0次冪等于1,即,如,(—2.0=1),則00無意義。

 、廴魏尾坏扔0的數(shù)的—p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即(a≠0,p是正整數(shù)),而0—1,0—3都是無意義的;當a>0時,a—p的值一定是正的;當a<0時,a—p的值可能是正也可能是負的,如,

 、苓\算要注意運算順序。

  7、整式的除法

  ¤1、單項式除法單項式

  單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;

  ¤2、多項式除以單項式

  多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉(zhuǎn)化成單項式除以單項式,所得商的項數(shù)與原多項式的項數(shù)相同,另外還要特別注意符號。

  8、分解因式

  ※1、把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式。

  ※2、因式分解與整式乘法是互逆關(guān)系。

  因式分解與整式乘法的區(qū)別和聯(lián)系:

 。1)整式乘法是把幾個整式相乘,化為一個多項式;

 。2)因式分解是把一個多項式化為幾個因式相乘。

  數(shù)學基礎知識點總結(jié) 6

  1、三類角的求法:

 、僬页龌蜃鞒鲇嘘P(guān)的角。

 、谧C明其符合定義,并指出所求作的角。

 、塾嬎愦笮。ń庵苯侨切,或用余弦定理)。

  2、正棱柱——底面為正多邊形的直棱柱

  正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。

  正棱錐的計算集中在四個直角三角形中:

  3、怎樣判斷直線l與圓C的位置關(guān)系?

  圓心到直線的距離與圓的半徑比較。

  直線與圓相交時,注意利用圓的“垂徑定理”。

  4、對線性規(guī)劃問題:

  作出可行域,作出以目標函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標函數(shù)的.最值。

  培養(yǎng)興趣是關(guān)鍵。學生對數(shù)學產(chǎn)生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?

 。1)欣賞數(shù)學的美感

  比如幾何圖形中的對稱、變換前后的不變量、概念的嚴謹、邏輯的嚴密……

  通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小于兩個定點之間的距離)的點的集合。

  (2)注意到數(shù)學在實際生活中的應用。

  例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識就可以理解、學好數(shù)學,是現(xiàn)代公民的基本素養(yǎng)之一啊

 。3)采用靈活的教學手段,與時俱進。

  利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學生也更容易接受,理解更深。

 。4)適當看一些科普類的書籍和文章。

  比如:學圓錐曲線的時候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學性質(zhì)的應用,這方面的文章也不少。

  數(shù)學基礎知識點總結(jié) 7

  初中數(shù)學知識點總結(jié):菱形

  我們在初中數(shù)學的學習中,將在一個平面內(nèi),一組鄰邊相等的平行四邊形成為菱形。

  對角線相互垂直的平行四邊形是菱形(rhombus)

  四條邊都相等的四邊形是菱形(rhombus)

  菱形的特殊性質(zhì)

  1、對角線互相垂直且平分,并且每條對角線平分一組對角;

  2、四條邊都相等;

  3、對角相等,鄰角互補;

  4、菱形既是軸對稱圖形,對稱軸是兩條對角線所在直線,也是中心對稱圖形,

  5、在60°的菱形中,短對角線等于邊長,長對角線是短對角線的根號三倍。

  菱形是特殊的平行四邊形,它具備平行四邊形的一切性質(zhì)。

  初中數(shù)學知識點總結(jié):平面直角坐標系

  平面直角坐標系

  平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  初中數(shù)學知識點:平面直角坐標系的構(gòu)成

  平面直角坐標系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  初中數(shù)學知識點:點的坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

  初中數(shù)學知識點:因式分解的一般步驟

  關(guān)于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  初中數(shù)學知識點:因式分解

  因式分解

  因式分解定義:把一個多項式化成幾個整式的'積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

  ①確定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

  ①不準丟字母

 、诓粶蕘G常數(shù)項注意查項數(shù)

  ③雙重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

  ⑤相同因式寫成冪的形式

 、奘醉椮撎柗爬ㄌ柾

  ⑦括號內(nèi)同類項合并。

  數(shù)學基礎知識點總結(jié) 8

  一、初中數(shù)學基本知識

  ㈠、數(shù)與代數(shù)

  A、數(shù)與式:

  1、有理數(shù)

  有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù)

 、诜謹(shù)→正分數(shù)/負分數(shù)

  數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  絕對值:①在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:

  加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。③一個數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個有理數(shù)互為倒數(shù)。

  除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。②0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:AMAN=A(MN)

  (AM)N=AMN

  (A/B)N=AN/BN除法一樣。

  整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

 、賳雾検较喑严禂(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検剑劝堰@個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

 、僬紸除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:

 、偻帜傅姆质较嗉訙p,分母不變,把分子相加減。

  ②異分母的分式先通分,化為同分母的分式,再加減。

  分式方程:

  ①分母中含有未知數(shù)的方程叫分式方程。

  ②使方程的分母為0的解稱為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:

 、僭谝粋方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程

  1)一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當?shù)?的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

  (3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

  3)解一元二次方程的步驟:

  (1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

  (3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c

  4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

  5)一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diata”,而△=b2-4ac,這里可以分為3種情況:

  I當△>0時,一元二次方程有2個不相等的實數(shù)根;

  II當△=0時,一元二次方程有2個相同的實數(shù)根;

  III當△<0時,一元二次方程沒有實數(shù)根(在這里,學到高中就會知道,這里有2個虛數(shù)根)

  2、不等式與不等式組

  不等式:

 、儆梅枴担=,〈號連接的式子叫不等式。

 、诓坏仁降膬蛇叾技由匣驕p去同一個整式,不等號的方向不變。

 、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋正數(shù),不等號方向不變。

  ④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。

  不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

 、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

 、矍蟛坏仁浇饧倪^程叫做解不等式。

  一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

  一元一次不等式組:

 、訇P(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

 、谝辉淮尾坏仁浇M中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

  ③求不等式組解集的過程,叫做解不等式組。

  一元一次不等式的符號方向:

  在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。

  在不等式中,如果加上同一個數(shù)(或加上一個正數(shù)),不等式符號不改向;例如:A>B,AC>BC

  在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:A>B,A-C>B-C

  在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)

  在不等式中,如果乘以同一個負數(shù),不等號改向;例如:A>B,A*C

  如果不等式乘以0,那么不等號改為等號

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;

  二、函數(shù)

  變量:因變量,自變量。

  在用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

  一次函數(shù):①若兩個變量X,間的關(guān)系式可以表示成=XB(B為常數(shù),不等于0)的形式,則稱是X的一次函數(shù)。②當B=0時,稱是X的正比例函數(shù)。

  一次函數(shù)的圖象:①把一個函數(shù)的自變量X與對應的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)=X的圖象是經(jīng)過原點的一條直線。③在一次函數(shù)中,當〈0,B〈O,則經(jīng)234象限;當〈0,B〉0時,則經(jīng)124象限;當〉0,B〈0時,則經(jīng)134象限;當〉0,B〉0時,則經(jīng)123象限。④當〉0時,的值隨X值的增大而增大,當X〈0時,的值隨X值的增大而減少。

  三、空間與圖形

  A、圖形的認識

  1、點,線,面

  點,線,面:①圖形是由點,線,面構(gòu)成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。

  展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的.上下底面的形狀相同,側(cè)面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。

  2、角

  線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經(jīng)過兩點有且只有一條直線。

  比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。

  角的比較:①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。②一條射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。②經(jīng)過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內(nèi),過一點有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;

  判定定理:到線段2端點距離相等的點在這線段的垂直平分線上

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

  性質(zhì)定理:角平分線上的點到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點在該角的角平分線上

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

  數(shù)學基礎知識點總結(jié) 10

  一、方程的有關(guān)概念

  1.方程:含有未知數(shù)的等式就叫做方程.

  2.一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.

  3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解.

  注:⑴方程的解和解方程是不同的概念,方程的解實質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的`含義是指求出方程的解或判斷方程無解的過程.⑵方程的解的檢驗方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論.

  二、等式的性質(zhì)

  等式的性質(zhì)(1):等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等.用式子形式表示為:如果a=b,那么a±c=b±c

  (2):等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ac=bc

  三、移項法則

  把等式一邊的某項變號后移到另一邊,叫做移項。

  四、去括號法則

  1.括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應各項的符號相同.

  2.括號外的因數(shù)是負數(shù),去括號后各項的符號與原括號內(nèi)相應各項的符號改變.

  五、解方程的一般步驟

  1、去分母(方程兩邊同乘各分母的最小公倍數(shù))

  2、去括號(按去括號法則和分配律)

  3、移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

  4、合并(把方程化成ax=b(a≠0)形式)

  5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=ba).

  六、用方程思想解決實際問題的一般步驟

  1、審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系.

  2、設:設未知數(shù)(可分直接設法,間接設法)

  3、列:根據(jù)題意列方程.

  4、解:解出所列方程.

  5、檢:檢驗所求的解是否符合題意.

  6、答:寫出答案(有單位要注明答案)

  七、有關(guān)常用應用類型題及各量之間的關(guān)系

  1、和、差、倍、分問題:

  (1)倍數(shù)關(guān)系:通過關(guān)鍵詞語"是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……"來體現(xiàn).

  (2)多少關(guān)系:通過關(guān)鍵詞語"多、少、和、差、不足、剩余……"來體現(xiàn).

  2、等積變形問題:"等積變形"是以形狀改變而體積不變?yōu)榍疤?常用等量關(guān)系為:

 、傩螤蠲娣e變了,周長沒變;

 、谠象w積=成品體積.

  3、勞力調(diào)配問題:這類問題要搞清人數(shù)的變化,常見題型有:

  (1)既有調(diào)入又有調(diào)出;

  (2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變;

  (3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變

  4、數(shù)字問題

  (1)要搞清楚數(shù)的表示方法:一個三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個位數(shù)字為c(其中a、b、c均為整數(shù),且1≤a≤9,0≤b≤9,0≤c≤9)則這個三位數(shù)表示為:100a+10b+c.

  (2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n-2表示;奇數(shù)用2n+1或2n-1表示.

  5、工程問題:工程問題中的三個量及其關(guān)系為:工作總量=工作效率×工作時間

  6、行程問題:

  (1)行程問題中的三個基本量及其關(guān)系:路程=速度×時間.

  (2)基本類型有

  ①相遇問題;

 、谧芳皢栴};常見的還有:相背而行;行船問題;環(huán)形跑道問題.

  7、商品銷售問題

  有關(guān)關(guān)系式:商品利潤=商品售價-商品進價=商品標價×折扣率-商品進價;商品利潤率=商品利潤/商品進價;商品售價=商品標價×折扣率

  8、儲蓄問題

 、蓬櫩痛嫒脬y行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率.利息的20%付利息稅

 、评=本金×利率×期數(shù)

  本息和=本金+利息

  利息稅=利息×稅率(20%)

  數(shù)學基礎知識點總結(jié) 11

  小學二年級數(shù)學知識點

  1、表內(nèi)除法的知識點:

  (1)理解平均分的意義。會根據(jù)表內(nèi)乘法,計算簡單的除法。

  (2)會用乘法口訣求商。

  (3)根據(jù)乘除法的意義解決一些簡單的乘除法應用題。

  (4)被除數(shù)÷除數(shù)=商被除數(shù)÷商=除數(shù)除數(shù)×商=被除數(shù)

  2、除法:是四則運算之一,已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算,叫做除法。

  3、除法的性質(zhì)

  一個數(shù)連續(xù)除以幾個數(shù),等于這個數(shù)除以那幾個數(shù)的乘積,就是除法的性質(zhì)。有時可以根據(jù)除法的性質(zhì)來進行簡便運算。如:300÷25÷4=300÷(25×4)

  4、除法公式

  (1)被除數(shù)÷除數(shù)=商

  (2)被除數(shù)÷商=除數(shù)

  (3)除數(shù)×商=被除數(shù)

  5、被除數(shù)

  除法運算中被另一個數(shù)所除的數(shù),如24÷8=3,其中24是被除數(shù)

  小學二年級數(shù)學《四邊形的認識》知識點

  長方形與正方形

  知識點:

  1、掌握長方形正方形的特征:長方形和正方形都有4條邊,4個直角,長方形對邊相等,正方形四條邊都相等。

  2、初步了解長方形、正方形之間的聯(lián)系:正方形是特殊的長方形。

  3、能在方格紙上畫出長方形與正方形。

  平行四邊形

  知識點:

  1、直觀認識平行四邊形,知道平行四邊形有四條邊、四個角,對邊相等。

  2、初步了解長方形是特殊的平行四邊形。

  教學內(nèi)容

  本冊教材第34—36頁上的例1、例2,完成“做一做”中的題。

  教學目的

  1、使學生初步認識四邊形,了解四邊形的特點,并能根據(jù)四邊形的特點對四邊形進行分類。

  2、通過學生動手操作、小組討論,培養(yǎng)學生獨立思考、合作交流的.學習精神。

  3、通過主題圖的教學,對學生進行熱愛運動、積極參加體育鍛煉的思想教育。

  教學重點

  找出四邊形的特點。

  教學難點

  根據(jù)四邊形的特點對四邊形進行分類。

  小學二年級的孩子如何學好數(shù)學學習方法

  二年級:拓展思路階段

  二年級的學生應把養(yǎng)成好的學習習慣和良好的思維方式作為一個長期學習的重點,而這個習慣都是從小就開始注重培養(yǎng)起來的。二年級的孩子在習慣上還比較有可塑性,著重培養(yǎng)良好的學習習慣;若是一旦不注意養(yǎng)成了不好的習慣,以后等孩子大了要想再改就比較困難了。

  1、數(shù)學入門越早越容易

  現(xiàn)在數(shù)學在各種選拔以及小學六年級考試等方面越來越重要,很多家長希望孩子能夠?qū)W習一些數(shù)學。對于今后希望在小學六年級中選擇較好學校的學生,我們的建議是較早的學習相對是較好的。首先較早學習數(shù)學,數(shù)學的知識體系比較完整,不會存在六年級時還要補習三年級數(shù)學知識的情況。其次較早入門有比較充足的時間激發(fā)孩子對數(shù)學的興趣,入門難度相對較低。

  2、興趣最重要,起點是關(guān)鍵

  不少四五年級希望開始學習數(shù)學的學生,令人驚訝的是,這些學生中有相當一部分學生其實在低年級時曾經(jīng)學過數(shù)學的,但因為當時學習聽課效果不好便放棄了,到了高年級,迫于小學六年級形勢又不得不學。對于這樣的學生,學習數(shù)學是有一定陰影的,甚至有些學生抱定了自己不適合學數(shù)學的念頭,有一定抵觸心理。

  所以既然家長決定低年級開始學習數(shù)學,一定要首先注意興趣上的培養(yǎng),幫助他們找到數(shù)學中引起他們興趣的事情,比如數(shù)字游戲等等。

  同時起點如果沒有選好,孩子學得吃力,自然不會有興趣,所以合適的課程選擇也是家長要注意的。

  3、一個好老師,一個好習慣

  對于二年級的學生來說,興趣和學習習慣的培養(yǎng)都是非常重要的。所以找一位孩子喜歡的老師就是學習的重中之重。一位好的老師能夠讓孩子迅速喜歡上課堂,以自己的人格魅力感染學生。在課堂上,老師不僅是孩子的是師長,也是孩子的朋友,和孩子們一起探討問題,一起思考,使孩子們養(yǎng)成良好的學習習慣,在喜歡老師的同時喜歡數(shù)學。

  數(shù)學基礎知識點總結(jié) 12

  1、自然數(shù)整數(shù)的意義

  用來表示物體個數(shù)的1,2,3……叫做自然數(shù)。一個物體也沒有,用0表示。0也是自然數(shù)它們都是整數(shù)。

  最小的自然數(shù)是0,沒有的自然數(shù)。自然數(shù)的個數(shù)是無限的。

  2、計數(shù)單位一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數(shù)單位。其中"一"是計數(shù)的基本單位。

  3、十進制計數(shù)法10個1是10,10個10是100……每相鄰兩個計數(shù)單位之間的進率都是10。這樣的計數(shù)法叫做十進制計數(shù)法。

  4、數(shù)位

  計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。

  5、整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個"億"或"萬"字。每一級末尾的0都不讀出來,其它數(shù)位連續(xù)有幾個0都只讀一個零。

  6、整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在那個數(shù)位上寫0。

  7、萬以上數(shù)的寫法:

  (1)一個數(shù)含有萬級和億級,應從位寫起,一級一級地往下寫。

 。2)寫數(shù)時哪一位上是幾就在那一位上寫幾,遇到哪一位上一個單位也沒有,就在那一位上寫0占位。

  8、比較兩個數(shù)的大。

 。1)如果位數(shù)不同,位數(shù)多的那個數(shù)就大,位數(shù)少的那個數(shù)就小;

 。2)如果位數(shù)相同,就從位開始比較,位數(shù)大的那個數(shù)就大;如果第一位相同就看下一位,以此類推。

  9、整萬、整億數(shù)的改寫:

 。1)改寫成以"萬"為單位的數(shù),把萬位后面的4個0去掉,加上一個"萬"字即可。

 。2)改寫成以"億"為單位的數(shù),把億位后面的8個0去掉,加上一個"億"字即可。

  10、近似數(shù)與準確數(shù):

  有些數(shù)的前面有"約"字,都不是準確數(shù),像這樣的數(shù)我們稱做為"近似數(shù)"。

  "四舍五入法":在取近似數(shù)的時候,按要求保留到哪一位,這一位后面的數(shù)稱為"尾數(shù)"。如果尾數(shù)的位數(shù)字小于5,就把尾數(shù)去掉。如果尾數(shù)的.位數(shù)字大于或等于5,就把尾數(shù)舍去并向它的前一位進"1",這種取近似數(shù)的方法叫做四舍五入法。

  "省略萬位或億位后面的尾數(shù)求近似數(shù)",就是用"四舍五入"法,把一個數(shù)精確(保留)到萬位或億位,求它的近似數(shù)。

 。1)用"萬"作單位的近似數(shù),應看千位上的數(shù)是幾,再決定是"四舍"還是"五入"。

 。2)用"億"作單位的近似數(shù),就看千萬位上的數(shù)是幾,再決定是"四舍"還是"五入"。

 。3)不管是用"萬"還是用"億"作單位,寫近似數(shù)時都要用約等號(≈)連接,末尾還要寫上"萬"字或"億"字。

  11、求近似數(shù)和數(shù)的改寫的相同點:求近似數(shù)和數(shù)的改寫都是把一個較大的數(shù)表示成整"萬"或整"億"的數(shù),后面都要加一個"萬"字或"億"字。

  不同點:求近似數(shù)是把一個數(shù)變成一個近似數(shù),數(shù)的大小發(fā)生了變化;而數(shù)的改寫只是把一個大數(shù)寫成了以"萬"或"億"為單位的數(shù),大小沒有發(fā)生變化。

  12、數(shù)字編碼。數(shù)不僅可以用來表示數(shù)量和順序,還可以用來編碼。編碼中的數(shù)字代表著一定的意義。編碼具有有序性。

  數(shù)學基礎知識點總結(jié) 13

  什么叫正比例?

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關(guān)系就叫做正比例關(guān)系。如:y/x=k(k一定)或kx=y

  正比例的意義

  滿足關(guān)系式y(tǒng)/x=k(k為常量)的兩個變量,我們稱這兩個變量的關(guān)系成正比例。

  顯然,若y與x成正比例,則y/x=k(k為常量);反之亦然。

  例如:在行程問題中,若速度一定時,則路程與時間成正比例;在工程問題中,若工作效率一定時,則工作總量與工作時間成正比例。

  注意:k不能等于0.

  正比例的例子:

  正方形的周長與邊長(比值4)。

  圓的周長與直徑(比值π)。

  購買的總價與購買的數(shù)量(比值單價)。

  路程的例子:

  1.速度一定,路程和時間成正比例。

  2.時間一定,路程和速度成正比例。

  長方形面積:面積一定,長和寬成反比例。

  都是定一個,變一個。例如aX=Y中,a不變,則X與Y成正比例。

  正比例和反比例相同與聯(lián)系

  相同之處

  1.事物關(guān)系中都有兩個變量,一個常量。

  2.在兩個變量中,當一個變量發(fā)生變化時,則另一個變量也隨之發(fā)生變化。

  3.相對應的兩個變數(shù)的積或商都是一定的。

  相互轉(zhuǎn)化

  當反比例中的x值(自變量的.值)也轉(zhuǎn)化為它的倒數(shù)時,由反比例轉(zhuǎn)化為正比例;當正比例中的x值(自變量的值)轉(zhuǎn)化為它的倒數(shù)時,由正比例轉(zhuǎn)化為反比例。

  數(shù)學基礎知識點總結(jié) 14

  相反數(shù)知識點

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;

  (3)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù).

  絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

  (3);;

  (4)|a|是重要的非負數(shù),即|a|≥0;注意:|a|·|b|=|a·b|.

  整式的加減知識

  一、代數(shù)式

  1、用運算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。

  2、用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式里的運算關(guān)系計算得出的結(jié)果,叫做代數(shù)式的值。

  二、整式

  1、單項式:

  (1)由數(shù)和字母的乘積組成的代數(shù)式叫做單項式。

  (2)單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)。

  (3)一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。

  2、多項式

  (1)幾個單項式的和,叫做多項式。

  (2)每個單項式叫做多項式的項。

  (3)不含字母的項叫做常數(shù)項。

  3、升冪排列與降冪排列

  (1)把多項式按x的指數(shù)從大到小的順序排列,叫做降冪排列。

  (2)把多項式按x的指數(shù)從小到大的順序排列,叫做升冪排列。

  三、整式的加減

  1、整式加減的理論根據(jù)是:去括號法則,合并同類項法則,以及乘法分配率。

  去括號法則:如果括號前是“十”號,把括號和它前面的“+”號去掉,括號里各項都不變符號;如果括號前是“一”號,把括號和它前面的“一”號去掉,括號里各項都改變符號。

  2、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

  合并同類項:

  (1)合并同類項的概念:把多項式中的同類項合并成一項叫做合并同類項。

  (2)合并同類項的法則:同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

  (3)合并同類項步驟:

  a.準確的.找出同類項。

  b.逆用分配律,把同類項的系數(shù)加在一起(用小括號),字母和字母的指數(shù)不變。

  c.寫出合并后的結(jié)果。

  (4)在掌握合并同類項時注意:

  a.如果兩個同類項的系數(shù)互為相反數(shù),合并同類項后,結(jié)果為0.

  b.不要漏掉不能合并的項。

  c.只要不再有同類項,就是結(jié)果(可能是單項式,也可能是多項式)。

  說明:合并同類項的關(guān)鍵是正確判斷同類項。

  3、幾個整式相加減的一般步驟:

  (1)列出代數(shù)式:用括號把每個整式括起來,再用加減號連接。

  (2)按去括號法則去括號。

  (3)合并同類項。

  4、代數(shù)式求值的一般步驟:

  (1)代數(shù)式化簡

  (2)代入計算

  (3)對于某些特殊的代數(shù)式,可采用“整體代入”進行計算。

  一元一次方程知識點

  1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!

  2.等式的性質(zhì):

  等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;

  等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.

  3.方程:含未知數(shù)的等式,叫方程.

  4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!

  5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1.

  6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.

  7.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).

  8.一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0).

  9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1……(檢驗方程的解).

  列一元一次方程解應用題。

  (1)讀題分析法:…………多用于“和,差,倍,分問題”

  仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.

  (2)畫圖分析法:…………多用于“行程問題”

  利用圖形分析數(shù)學問題是數(shù)形結(jié)合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎.

  數(shù)學基礎知識點總結(jié) 15

  在備考過程中,數(shù)學科目需要記憶的知識雖然不多,但往往差之毫厘失之千里。所以在備考數(shù)學的過程中,大家一定要把基礎知識和公式準確的記憶下來。

  什么叫互質(zhì)數(shù)?

  定義及定理:【對于兩個數(shù)來看 】 公因數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù)。

  【對于多個數(shù)來看(教材定義)】 若干個最大公因數(shù)只有1的正整數(shù),叫做互質(zhì)數(shù)。

  表達及運用注意

 。1)這里所說的“兩個數(shù)”是指除0外的所有自然數(shù)。

 。2)“公因數(shù)只有 1”,不能誤說成“沒有公因數(shù)!

  (3)三個或三個以上自然數(shù)互質(zhì)有兩種不同的情況:一種是這些成互質(zhì)數(shù)的.自然數(shù)是兩兩互質(zhì)的。如2、3、5。另一種不是兩兩互質(zhì)的。如6、8、9。 兩個正整數(shù)(N),除了1以外,沒有其他公約數(shù)時,稱這兩個數(shù)為互質(zhì)數(shù).互質(zhì)數(shù)的概率是6/π^2

  判定互質(zhì)數(shù)的方法匯總

  直接分辨

 。1)兩個不相同質(zhì)數(shù)一定是互質(zhì)數(shù)。例如,2與7、13與19。

 。2)相鄰的兩個自然數(shù)是互質(zhì)數(shù)。例如 15與 16。

 。3)相鄰的兩個奇數(shù)是互質(zhì)數(shù)。例如 49與 51。

 。4)大數(shù)是質(zhì)數(shù)的兩個數(shù)是互質(zhì)數(shù)。例如97與88。

 。5)小數(shù)是質(zhì)數(shù),大數(shù)不是小數(shù)的倍數(shù)的兩個數(shù)是互質(zhì)數(shù)。例如 7和 16。

 。6)2和任何奇數(shù)是互質(zhì)數(shù)。例如2和87。

 。7)1和任何自然數(shù)(0除外)都是互質(zhì)數(shù)。

  計算判定法

  (1)兩個數(shù)都是合數(shù)(兩數(shù)相差較大),小數(shù)所有的質(zhì)因數(shù),都不是大數(shù)的約數(shù),這兩個數(shù)是互質(zhì)數(shù)。 如357與715,357=3×7×17,而3、7和17都不是715的約數(shù),這兩個數(shù)為互質(zhì)數(shù)。

 。2)兩個數(shù)都是合數(shù)(兩數(shù)相差較。,這兩個數(shù)的差的所有質(zhì)因數(shù)都不是小數(shù)的約數(shù),這兩個數(shù)是互質(zhì)數(shù)。如85和78。 85-78=7,7不是78的約數(shù),這兩個數(shù)是互質(zhì)數(shù)。

 。3)兩個數(shù)都是合數(shù),大數(shù)除以小數(shù)的余數(shù)(不為“0”且大于“ 1”)的所有質(zhì)因數(shù),都不是小數(shù)的約數(shù),這兩個數(shù)是互質(zhì)數(shù)。如 462與 221

  462÷221=2……20,

  20=2×2×5。

  2、5都不是221的約數(shù),這兩個數(shù)是互質(zhì)數(shù)。

  (4)減除法。如255與182。

  255-182=73,觀察知 73<182。

  182-(73×2)=36,顯然 36<73。

  73-(36×2)=1,

 。255,182)=1。

  所以這兩個數(shù)是互質(zhì)數(shù)。

  數(shù)學基礎知識點總結(jié) 16

  重視課本

  現(xiàn)在命題的趨向,尤其是上海市是以基礎題為主的,有兩題的難度要求高。堅持源于教材的基礎題(按以前的慣例)有100多分,是課本上的原題或略有修改。建議第一階段復習應以課本為主,例題等每一個題目認認真真地做一遍,并善于歸納分析和概括總結(jié) 初中英語。現(xiàn)在許多初三一味搞題海戰(zhàn)術(shù),整天埋頭做大量的課外習題,其效果并不明顯,有本末倒置之嫌。

  重視基礎理解

  基礎知識即課程中所涉及的概念、公式、公理、定理等。要求學生能揭示各知識點的內(nèi)在聯(lián)系,從知識結(jié)構(gòu)的整體出發(fā)去解決問題,要求學生綜合運用各種知識于一題。在復習時,應從整體上理解這部分內(nèi)容,從結(jié)構(gòu)上把握教材,達到熟練地將這兩部分知識相互轉(zhuǎn)化。又如一元二次方程與幾何知識的聯(lián)系的題目特點非常明顯,應掌握其基本解法。

  重視數(shù)學基本

  中考數(shù)學命題除了著重考查基礎知識外,還十分重視對數(shù)學方法的考查,如配方法,換元法,判別式法等操作性較強的數(shù)學方法。同學們在復習時應對每一種方法的實質(zhì),它所適應的題型,包括解題步驟應熟練掌握。其次應重視對數(shù)學思想的理解及運用,如函數(shù)思想,在初中的中,明確告訴了自變量與因變量,要求寫成函數(shù)解析式,或者隱含用函數(shù)解析式去求交點等問題,同學們應加深對這一思想的深刻理解,多做一些相關(guān)內(nèi)容的題目;如方程思想,它是已知量與未知量之間的聯(lián)系和制約,把未知量轉(zhuǎn)化為已知量的思想。應牢固樹立建立方程的思想,比如要求兩個量必須根據(jù)已知條件建立關(guān)于這兩個量的方程(或等式);再如數(shù)形結(jié)合的'思想,上海市近幾年中考“壓軸題”都與此有關(guān),把圖式三角形放到直角坐標系中利用它們圖形上的相互關(guān)系,熟練進行代數(shù)知識與幾何知識的相互轉(zhuǎn)換。許多同學解這類問題時往往要么只注意到代數(shù)知識,要么只注意到幾何知識,不會把它們相互轉(zhuǎn)化。如坐標系中點的坐標與幾何圖形中線段的長的關(guān)系;坐標系中x軸與y軸相互垂直與幾何圖形中的直角、垂直、對稱及切線等的關(guān)系;函數(shù)解析式與圖形的交點之間的關(guān)系等。

  數(shù)學基礎知識點總結(jié) 17

  高一階段是學習高中數(shù)學的關(guān)鍵時期。對于高一新生而言,在高一學好數(shù)學,不僅能為高考(Q吧)打好基礎,同時也有助于物理、化學等學科的學習。那么,面對著全新的教材和學習環(huán)境,高一新生應如何學好數(shù)學呢?正定中學的梁書果老師說,要想學好高一數(shù)學,同學們應該轉(zhuǎn)變觀念,提高認識和改進學法。

  讀好課本,學會研究

  梁老師說,同學們應從高一開始,增強自己從課本入手進行研究的意識。同學們可以把每條定理、每道例題都當做習題,認真地重證、重解,并適當加些批注。要通過對典型例題的講解分析,歸納出解決這類問題的數(shù)學思想和方法,并做好解題后的反思,總結(jié)出解題的一般規(guī)律和特殊規(guī)律,以便推廣和靈活運用。另外,同學們要盡可能獨立解題,因為求解過程,也是培養(yǎng)分析問題和解決問題能力的一個過程,更是一個研究過程。

  記好筆記,注重課堂

  “要學好數(shù)學,培養(yǎng)好的`聽課習慣也很重要!绷豪蠋熣f,同學們在聽課的時候要集中注意力,把老師講的關(guān)鍵性部分聽懂、聽會。聽的時候要注意思考、分析問題,但是光聽不記,或光記不聽必然顧此失彼,課堂效益低下,因此應適當?shù)赜心康男缘赜浐霉P記,領(lǐng)會課上老師的主要精神與意圖。

  做好作業(yè),講究規(guī)范

  在課堂、課外練習中,培養(yǎng)良好的作業(yè)習慣也很有必要。梁老師說,同學們在做作業(yè)時,不但要做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑。作業(yè)應獨立完成,這樣可以培養(yǎng)獨立思考的能力和解題正確的責任感。在作業(yè)時要提倡效率,應該十分鐘完成的作業(yè),不拖到半小時完成,拖沓的做作業(yè)習慣容易使思維松散、精力不集中,這對培養(yǎng)數(shù)學能力是有害而無益的。

  寫好總結(jié),把握規(guī)律

  “不會總結(jié)的同學,他的能力就不會提高,挫折經(jīng)驗是成功的基石!币獙W好數(shù)學,同學們就應該經(jīng)常做好總結(jié),把握規(guī)律。通過與老師、同學平時的接觸交流,可以逐步總結(jié)出一般性的學習步驟,包括:制定計劃、課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學習幾個方面,簡單概括為四個環(huán)節(jié)(預習、上課、整理、作業(yè))和一個步驟(復習總結(jié))。每一個環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強的目的性、針對性,要落實到位。應堅持“兩先兩后一小結(jié)”(先預習后聽課,先復習后做作業(yè),寫好每個單元的總結(jié))的學習習慣。

  數(shù)學基礎知識點總結(jié) 18

  一、相似三角形7個考點

  考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小

  考核要求:1理解相似形的概念;2掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小.

  考點2:平行線分線段成比例定理、三角形一邊的平行線的有關(guān)定理

  考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算.

  注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用.

  考點3:相似三角形的概念

  考核要求:以相似三角形的概念為基礎,抓住相似三角形的特征,理解相似三角形的定義.

  考點4:相似三角形的判定和性質(zhì)及其應用

  考核要求:熟練掌握相似三角形的判定定理包括預備定理、三個判定定理、直角三角形相似的判定定理和性質(zhì),并能較好地應用.

  考點5:三角形的重心

  考核要求:知道重心的定義并初步應用.

  考點6:向量的有關(guān)概念

  考點7:向量的加法、減法、實數(shù)與向量相乘、向量的線性運算

  考核要求:掌握實數(shù)與向量相乘、向量的線性運算

  二、銳角三角比2個考點

  考點8:銳角三角比銳角的正弦、余弦、正切、余切的概念,30度、45度、60度角的三角比值.

  考點9:解直角三角形及其應用

  考核要求:1理解解直角三角形的意義;2會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形.

  三、二次函數(shù)4個考點

  考點10:函數(shù)以及函數(shù)的`定義域、函數(shù)值等有關(guān)概念,函數(shù)的表示法,常值函數(shù)

  考核要求:1通過實例認識變量、自變量、因變量,知道函數(shù)以及函數(shù)的定義域、函數(shù)值等概念;2知道常值函數(shù);3知道函數(shù)的表示方法,知道符號的意義.

  考點11:用待定系數(shù)法求二次函數(shù)的解析式

  考核要求:1掌握求函數(shù)解析式的方法;2在求函數(shù)解析式中熟練運用待定系數(shù)法.

  注意求函數(shù)解析式的步驟:一設、二代、三列、四還原.

  考點12:畫二次函數(shù)的圖像

  考核要求:1知道函數(shù)圖像的意義,會在平面直角坐標系中用描點法畫函數(shù)圖像;2理解二次函數(shù)的圖像,體會數(shù)形結(jié)合思想;3會畫二次函數(shù)的大致圖像.

  考點13:二次函數(shù)的圖像及其基本性質(zhì)

  考核要求:1借助圖像的直觀、認識和掌握一次函數(shù)的性質(zhì),建立一次函數(shù)、二元一次方程、直線之間的聯(lián)系;2會用配方法求二次函數(shù)的頂點坐標,并說出二次函數(shù)的有關(guān)性質(zhì).

  注意:1解題時要數(shù)形結(jié)合;2二次函數(shù)的平移要化成頂點式.

  四、圓的相關(guān)概念6個考點

  考點14:圓心角、弦、弦心距的概念

  考核要求:清楚地認識圓心角、弦、弦心距的概念,并會用這些概念作出正確的判斷.

  考點15:圓心角、弧、弦、弦心距之間的關(guān)系

  考核要求:認清圓心角、弧、弦、弦心距之間的關(guān)系,在理解有關(guān)圓心角、弧、弦、弦心距之間的關(guān)系的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明.

  考點16:垂徑定理及其推論

  垂徑定理及其推論是圓這一板塊中最重要的知識點之一.

  考點17:直線與圓、圓與圓的位置關(guān)系及其相應的數(shù)量關(guān)系

  直線與圓的位置關(guān)系可從 與 之間的關(guān)系和交點的個數(shù)這兩個側(cè)面來反映.在圓與圓的位置關(guān)系中,常需要分類討論求解.

  考點18:正多邊形的有關(guān)概念和基本性質(zhì)

  考核要求:熟悉正多邊形的有關(guān)概念如半徑、邊心距、中心角、外角和,并能熟練地運用正多邊形的基本性質(zhì)進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構(gòu)成的直角三角形,將正多邊形的計算問題轉(zhuǎn)化為直角三角形的計算問題.

  考點19:畫正三、四、六邊形.

  考核要求:能用基本作圖工具,正確作出正三、四、六邊形.

  五、數(shù)據(jù)整理和概率統(tǒng)計9個考點

  考點20:確定事件和隨機事件

  考核要求:1理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關(guān)系;2能區(qū)分簡單生活事件中的必然事件、不可能事件、隨機事件.

  考點21:事件發(fā)生的可能性大小,事件的概率

  考核要求:1知道各種事件發(fā)生的可能性大小不同,能判斷一些隨機事件發(fā)生的可能事件的大小并排出大小順序;2知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;3理解隨機事件發(fā)生的頻率之間的區(qū)別和聯(lián)系,會根據(jù)大數(shù)次試驗所得頻率估計事件的概率.注意:1在給可能性的大小排序前可先用“一定發(fā)生”、“很有可能發(fā)生”、“可能發(fā)生”、“不太可能發(fā)生”、“一定不會發(fā)生”等詞語來表述事件發(fā)生的可能性的大小;2事件的概率是確定的常數(shù),而概率是不確定的,可是近似值,與試驗的次數(shù)的多少有關(guān),只有當試驗次數(shù)足夠大時才能更精確.

  考點22:等可能試驗中事件的概率問題及概率計算

  本考點的考核要求是1理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;2會用枚舉法或畫“樹形圖”方法求等可能事件的概率,會用區(qū)域面積之比解決簡單的概率問題;3形成對概率的初步認識,了解機會與風險、規(guī)則公平性與決策合理性等簡單概率問題.

  在求解概率問題中要注意:1計算前要先確定是否為可能事件;2用枚舉法或畫“樹形圖”方法求等可能事件的概率過程中要將所有等可能情況考慮完整.

  考點23:數(shù)據(jù)整理與統(tǒng)計圖表

  本考點考核要求是:1知道數(shù)據(jù)整理分析的意義,知道普查和抽樣調(diào)查這兩種收集數(shù)據(jù)的方法及其區(qū)別;2結(jié)合有關(guān)代數(shù)、幾何的內(nèi)容,掌握用折線圖、扇形圖、條形圖等整理數(shù)據(jù)的方法,并能通過圖表獲取有關(guān)信息.

  考點24:統(tǒng)計的含義

  本考點的考核要求是:1知道統(tǒng)計的意義和一般研究過程;2認識個體、總體和樣本的區(qū)別,了解樣本估計總體的思想方法.

  考點25:平均數(shù)、加權(quán)平均數(shù)的概念和計算

  本考點的考核要是:1理解平均數(shù)、加權(quán)平均數(shù)的概念;2掌握平均數(shù)、加權(quán)平均數(shù)的計算公式.注意:在計算平均數(shù)、加權(quán)平均數(shù)時要防止數(shù)據(jù)漏抄、重抄、錯抄等錯誤現(xiàn)象,提高運算準確率.

  考點26:中位數(shù)、眾數(shù)、方差、標準差的概念和計算

  考核要求:1知道中位數(shù)、眾數(shù)、方差、標準差的概念;2會求一組數(shù)據(jù)的中位數(shù)、眾數(shù)、方差、標準差,并能用于解決簡單的統(tǒng)計問題.

  注意:當一組數(shù)據(jù)中出現(xiàn)極值時,中位數(shù)比平均數(shù)更能反映這組數(shù)據(jù)的平均水平;2求中位數(shù)之前必須先將數(shù)據(jù)排序.

  考點27:頻數(shù)、頻率的意義,畫頻數(shù)分布直方圖和頻率分布直方圖

  考核要求:1理解頻數(shù)、頻率的概念,掌握頻數(shù)、頻率和總量三者之間的關(guān)系式;2會畫頻數(shù)分布直方圖和頻率分布直方圖,并能用于解決有關(guān)的實際問題.解題時要注意:頻數(shù)、頻率能反映每個對象出現(xiàn)的頻繁程度,但也存在差別:在同一個問題中,頻數(shù)反映的是對象出現(xiàn)頻繁程度的絕對數(shù)據(jù),所有頻數(shù)之和是試驗的總次數(shù);頻率反映的是對象頻繁出現(xiàn)的相對數(shù)據(jù),所有的頻率之和是1.

  考點28:中位數(shù)、眾數(shù)、方差、標準差、頻數(shù)、頻率的應用

  本考點的考核要是:1了解基本統(tǒng)計量平均數(shù)、眾數(shù)、中位數(shù)、方差、標準差、頻數(shù)、頻率的意計算及其應用,并掌握其概念和計算方法;2正確理解樣本數(shù)據(jù)的特征和數(shù)據(jù)的代表,能根據(jù)計算結(jié)果作出判斷和預測;3能將多個圖表結(jié)合起來,綜合處理圖表提供的數(shù)據(jù),會利用各種統(tǒng)計量來進行推理和分析,研究解決有關(guān)的實際生活中問題,然后作出合理的解決.

【數(shù)學基礎知識點總結(jié)】相關(guān)文章:

初二數(shù)學基礎知識點歸納總結(jié)12-26

基礎知識點總結(jié)11-11

電工基礎知識點總結(jié)07-20

語文基礎知識點總結(jié)10-19

電工基礎知識點總結(jié)03-13

初中數(shù)學三角函數(shù)基礎知識點總結(jié)03-11

電路基礎知識點總結(jié)12-02

小學語文基礎知識點總結(jié)08-26

基礎知識點總結(jié)15篇11-11