初中圓知識點(diǎn)
在我們平凡的學(xué)生生涯里,是不是聽到知識點(diǎn),就立刻清醒了?知識點(diǎn)是指某個(gè)模塊知識的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。那么,都有哪些知識點(diǎn)呢?下面是小編精心整理的初中圓知識點(diǎn),供大家參考借鑒,希望可以幫助到有需要的朋友。
初中圓知識點(diǎn) 篇1
一、圓
1、圓的有關(guān)性質(zhì)
在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長的點(diǎn)都在圓上。
就是說:圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。
圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的'集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡稱弧。
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個(gè)圓叫同心圓。
能夠重合的兩個(gè)圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點(diǎn)的圓
l、過三點(diǎn)的圓
過三點(diǎn)的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
經(jīng)過三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個(gè)步驟:
、偌僭O(shè)命題的結(jié)論不成立;
、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;
③由矛盾得出假設(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個(gè)角是鈍角。
證明:設(shè)有兩個(gè)以上是鈍角
則兩個(gè)鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個(gè)以上是鈍角。
即最多只能有一個(gè)是鈍角。
三、垂直于弦的直徑
圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。
弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個(gè)條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對稱中心的中心對稱圖形。
實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來的圖形重合。
頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。
五、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
初中圓知識點(diǎn) 篇2
1.不在同一直線上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的.點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。
11定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角
12.①直線L和⊙O相交d
、谥本L和⊙O相切d=r
、壑本L和⊙O相離d>r
13.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑
15.推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
16.推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
17.切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20.①兩圓外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-rr)
④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)
21.定理相交兩圓的連心線垂直平分兩圓的公共弦
22.定理把圓分成n(n≥3):
、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
25.定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26.正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
27.正三角形面積√3a/4a表示邊長
28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長計(jì)算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
32.定理一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
35.弧長公式l=axra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2xlxr
初中圓知識點(diǎn) 篇3
、僦本和圓無公共點(diǎn),稱相離。 AB與圓O相離,d>r。
、谥本和圓有兩個(gè)公共點(diǎn),稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
、壑本和圓有且只有一公共點(diǎn),稱相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的.方程
如果b^2-4ac>0,則圓與直線有2交點(diǎn),即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點(diǎn),即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點(diǎn),即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規(guī)定x1
當(dāng)x=-C/Ax2時(shí),直線與圓相離;
初中圓知識點(diǎn) 篇4
集合:
圓:圓可以看作是到定點(diǎn)的距離等于定長的點(diǎn)的集合;
圓的外部:可以看作是到定點(diǎn)的距離大于定長的點(diǎn)的集合;
圓的內(nèi)部:可以看作是到定點(diǎn)的距離小于定長的點(diǎn)的集合
軌跡:
1、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡是:以定點(diǎn)為圓心,定長為半徑的圓;
2、到線段兩端點(diǎn)距離相等的點(diǎn)的軌跡是:線段的中垂線;
3、到角兩邊距離相等的點(diǎn)的軌跡是:角的平分線;
4、到直線的距離相等的點(diǎn)的軌跡是:平行于這條直線且到這條直線的距離等于定長的兩條直線;
5、到兩條平行線距離相等的點(diǎn)的軌跡是:平行于這兩條平行線且到兩條直線距離都相等的一條直線。
圓周角定理推論:
圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角都等于這條弧所對的圓心角的一半。
、賵A周角度數(shù)定理:圓周角的`度數(shù)等于它所對的弧的度數(shù)的一半。
、谕瑘A或等圓中,圓周角等于它所對的弧上的圓心角的一半。
、弁瑘A或等圓中,同弧或等弧所對的圓周角相等,相等圓周角所對的弧也相等。(不在同圓或等圓中其實(shí)也相等的。注:僅限這一條。)
、馨雸A(或直徑)所對圓周角是直角,90°的圓周角所對的弦是直徑。
、輬A的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角。
⑥在同圓或等圓中,圓周角相等<=>弧相等<=>弦相等。
圓周運(yùn)動
1、勻速圓周運(yùn)動:質(zhì)點(diǎn)沿圓周運(yùn)動,在相等的時(shí)間里通過的圓弧長度相同。
2、描述勻速圓周運(yùn)動快慢的物理量
(1)線速度v:質(zhì)點(diǎn)通過的弧長和通過該弧長所用時(shí)間的比值,即v=s/t,單位m/s;屬于瞬時(shí)速度,既有大小,也有方向。方向?yàn)樵趫A周各點(diǎn)的切線方向上
xx勻速圓周運(yùn)動是一種非勻速曲線運(yùn)動,因而線速度的方向在時(shí)刻改變。
(2)角速度 :ω=φ/t(φ指轉(zhuǎn)過的角度,轉(zhuǎn)一圈φ為 ),單位 rad/s或1/s;對某一確定的勻速圓周運(yùn)動而言,角速度是恒定的
(3)周期T,頻率f=1/T
(4)線速度、角速度及周期之間的關(guān)系:
3、向心力:向心力就是做勻速圓周運(yùn)動的物體受到一個(gè)指向圓心的合力,向心力只改變運(yùn)動物體的速度方向,不改變速度大小。
4、向心加速度:描述線速度變化快慢,方向與向心力的方向相同,
5,注意的結(jié)論:
(1)由于 方向時(shí)刻在變,所以勻速圓周運(yùn)動是瞬時(shí)加速度的方向不斷改變的變加速運(yùn)動。
(2)做勻速圓周運(yùn)動的物體,向心力方向總指向圓心,是一個(gè)變力。
(3)做勻速圓周運(yùn)動的物體受到的合外力就是向心力。
6、離心運(yùn)動:做勻速圓周運(yùn)動的物體,在所受的合力突然消失或者不足以提供圓周運(yùn)動所需的向心力的情況下,就做逐漸遠(yuǎn)離圓心的運(yùn)動。
初中圓知識點(diǎn) 篇5
1、在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的封閉曲線叫做圓。固定的端點(diǎn)O叫做圓心,線段OA叫做半徑,以點(diǎn)O為圓心的圓,記作☉O,讀作“圓O”
2、與圓有關(guān)的概念
。1)弦和直徑(連結(jié)圓上任意兩點(diǎn)的線段BC叫做弦,經(jīng)過圓心的弦AB叫做直徑)
。2)弧和半圓(圓上任意兩點(diǎn)間的部分叫做弧,圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條 弧,每一條弧都叫做半圓)
。3)等圓(半徑相等的兩個(gè)圓叫做等圓)
3、點(diǎn)和圓的位置關(guān)系:
如果P是圓所在平面內(nèi)的一點(diǎn),d 表示P到圓心的距離,r表示圓的半徑,則:
。1)d<r →圓內(nèi)
。2)d=r →圓上
。3)d>r →圓外
4、三角形的外接圓
經(jīng)過三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,外接圓的圓心叫做三角形的外心,三角形叫做圓的內(nèi)接三角形。三角形的外心到各頂點(diǎn)距離相等。
一個(gè)三角形有且僅有一個(gè)外接圓,但一個(gè)圓有無數(shù)內(nèi)接三角形。
5、垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的.兩條弧。
推論:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。
。2)平分弧的直徑,垂直平分弧所對的弦。
6、圓心角定理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。
7、圓周角定理: 一條弧所對的圓周角等于它所對的 圓心角的一半 。 推論:半圓(或直徑)所對的圓周角是 直角,90°圓周角所對的弦是 直徑 。 同弧或等弧所對的圓周角相等;在同圓或等圓中,相等的圓周角所對的弧也相等。
8、弧長及扇形的面積圓錐的側(cè)面積和全面積
(1)弧長公式:lnr 180
nr21lr(2)扇形的面積公式:3602
(3)圓錐的側(cè)面積公式:rl
(4)圓錐的表面積公式:rlr
9、圓與圓的位置關(guān)系
、賰蓤A外離 d﹥R+r
、趦蓤A外切 d=R+r
、蹆蓤A相交 R-r﹤d﹤R+r(R﹥r(jià))
、軆蓤A內(nèi)切 d=R-r(R﹥r(jià))
、輧蓤A內(nèi)含 d﹤R-r(R﹥r(jià))
初中圓知識點(diǎn) 篇6
5.1圓
1、定義:圓是到定點(diǎn)的距離等于定長的點(diǎn)的集合
2、點(diǎn)與圓的位置關(guān)系:
如果⊙O的半徑為r,點(diǎn)P到圓心O的距離為d,那么
點(diǎn)P在圓內(nèi),則dr;
點(diǎn)P在圓上,則dr;
點(diǎn)P在圓外,則dr;反之亦成立。
5.2圓的對稱性
一、圓是中心對稱圖形,圓心是它的對稱中心。
定理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。
圓心角的度數(shù)與它所對的弧的度數(shù)相等。
二、圓是軸對稱圖形,過圓心的任意一條直線都是它的對稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
5.3圓周角
定義:頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角
定理:同弧或等弧所對的圓周角相等,都等于該弧所對的圓心角的一半。
定理:直徑(或半圓)所對的圓周角是直角。90o的圓周角所對的弦是直徑。
5.4確定圓的條件
結(jié)論:不在同一條直線上的三點(diǎn)確定一個(gè)圓
三角形的外接圓(三角形的外心):三角形的外心是三角形中3邊垂直平分線的交點(diǎn),三角形的外心到三角形各頂點(diǎn)的`距離相等。
注:直角三角形的外心是斜邊的中點(diǎn),外接圓的半徑等于斜邊的一半。
5.5直線與圓的位置關(guān)系
一、三種位置關(guān)系:相交、相切、相離
如果⊙O的半徑為r,圓心O到直線l的距離為d,那么
直線l與⊙O相交,則dr;
直線l與⊙O相切,則dr;
直線l與⊙O相離,則dr;反之亦成立。
二、圓的切線的性質(zhì)及判定
定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
兩種方法:連半徑,證垂直;作垂直,證半徑
定理:圓的切線垂直于過切點(diǎn)的半徑
三角形的內(nèi)切圓(三角形的內(nèi)心):三角形的內(nèi)心是三角形中3條角平分的交點(diǎn),三角形的內(nèi)心到三角形各邊的距離相等。
注:求三角形的內(nèi)切圓的半徑通常用面積法,特殊地,直角三角形內(nèi)切圓的半徑=a?b?c(其中c為斜邊) 2
切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,這點(diǎn)和圓心的連線平分兩條切線的夾角。
5.6圓與圓的位置關(guān)系
五種位置關(guān)系:外離、外切、相交、內(nèi)切、內(nèi)含
閱讀材料:如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上相交兩圓的連心線垂直平分兩圓的公共弦。
5.7正多邊形與圓
各邊相等、各角也相等的多邊形叫做正多邊形。
正多邊形都是軸對稱圖形,一個(gè)正n邊形共有n條對稱軸,每條對稱軸都通過正n邊形的中心。一個(gè)正多邊形,如果有偶數(shù)條邊,那么它既是軸對稱圖形,又是中心對稱圖形。
注:與正多邊形有關(guān)的計(jì)算
初中圓知識點(diǎn) 篇7
1.圓中心的一點(diǎn)叫圓心,用O表示。一端在圓心,另一端在圓上的線段叫半徑,用r表示。
兩端都在圓上,并過圓心的線段叫直徑,用d表示。
2.圓有無數(shù)條半徑,有無數(shù)條直徑。
3.圓心決定圓的位置,半徑?jīng)Q定圓的大小。
4.把圓對折,再對折就能找到圓心。
5.圓是軸對稱圖形,直徑所在的直線是圓的對稱軸。圓有無數(shù)條對稱軸。
6.在同一個(gè)圓里,直徑的長度是半徑的'2倍,可以表示為d=2r或r=d/2.
圓的周長
8.圓的周長除以直徑的商是一個(gè)固定的數(shù),叫做圓周率,用字母表示,計(jì)算時(shí)通常取3.14.
9.C=d或C=r. 半圓的周長
10. 1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
7=21.98 8=25.12 9=28.26 10=31.4
圓的面積
用S表示圓的面積, r表示圓的半徑,那么S=r^2 S環(huán)=(R^2-r^2)
初中圓知識點(diǎn) 篇8
圓定義:
(1)平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。
(2)平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。
圓心:
(1)如定義(1)中,該定點(diǎn)為圓心
(2)如定義(2)中,繞的那一端的端點(diǎn)為圓心。
(3)圓任意兩條對稱軸的交點(diǎn)為圓心。
(4)垂直于圓內(nèi)任意一條弦且兩個(gè)端點(diǎn)在圓上的線段的二分點(diǎn)為圓心。
注:圓心一般用字母O表示
直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
半徑:連接圓心和圓上任意一點(diǎn)的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。
圓的周長與直徑的比值叫做圓周率。圓的周長除以直徑的商是一個(gè)固定的數(shù),把它叫做圓周率,它是一個(gè)無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計(jì)算時(shí),通常取它的近似值,π≈3.14。
直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
圓的面積公式:圓所占平面的大小叫做圓的面積。πr^2,用字母S表示。
一條弧所對的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。
周長計(jì)算公式
1.、已知直徑:C=πd
2、已知半徑:C=2πr
3、已知周長:D=cπ
4、圓周長的一半:12周長(曲線)
5、半圓的長:12周長+直徑
面積計(jì)算公式:
1、已知半徑:S=πr平方
2、已知直徑:S=π(d2)平方
3、已知周長:S=π(c2π)平方
點(diǎn)、直線、圓和圓的位置關(guān)系
1.點(diǎn)和圓的位置關(guān)系
、冱c(diǎn)在圓內(nèi)<=>點(diǎn)到圓心的距離小于半徑
、埸c(diǎn)在圓外<=>點(diǎn)到圓心的距離大于半徑
、谥本l和⊙O相切<=>d=r;
圓和圓定義:
兩個(gè)圓沒有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓的外離。
兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部,叫做兩個(gè)圓的外切。
兩個(gè)圓有兩個(gè)交點(diǎn),叫做兩個(gè)圓的相交。
兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部,叫做兩個(gè)圓的內(nèi)切。
兩個(gè)圓沒有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓的內(nèi)含。
原理:圓心距和半徑的數(shù)量關(guān)系:
兩圓外離<=>d>R+r兩圓外切<=>d=R+r兩圓相交<=>R-r<>=r)
正多邊形和圓
1、正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2、正多邊形與圓的關(guān)系:
(1)將一個(gè)圓n(n≥3)等分(可以借助量角器),依次連結(jié)各等分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形。
(2)這個(gè)圓是這個(gè)正多邊形的外接圓。
3、正多邊形的有關(guān)概念:
(1)正多邊形的中心——正多邊形的外接圓的圓心。
(2)正多邊形的半徑——正多邊形的外接圓的半徑。
(3)正多邊形的邊心距——正多邊形中心到正多邊形各邊的距離。
(4)正多邊形的中心角——正多邊形每一邊所對的外接圓的圓心角。
4、正多邊形性質(zhì):
(1)任何正多邊形都有一個(gè)外接圓。
(2)正多邊形都是軸對稱圖形,當(dāng)邊數(shù)是偶數(shù)時(shí),它又是中心對稱圖形,正n邊形的對稱軸有n條。(3)邊數(shù)相同的正多邊形相似。
初中圓知識點(diǎn) 篇9
1、圓心:圓中心一點(diǎn)叫做圓心。用字母“O”來表示。半徑:連接圓心和圓上任意一點(diǎn)的線段叫做半徑,用字母“r”來表示。直徑:通過圓心并且兩端都在圓上的線段叫做直徑,用字母“d”表示。
2、圓心確定圓的位置,半徑確定圓的大小。
3、在同一個(gè)圓內(nèi),所有的半徑都相等,所有的直徑都相等。
在同一個(gè)圓內(nèi),有無數(shù)條半徑,有無數(shù)條直徑。
在同一個(gè)圓內(nèi),直徑的長度是半徑的2倍,半徑的長度是直徑的一半。用字母表示為:d=2r r=2(1)d
4、圓的周長:圍成圓的曲線的長度叫做圓的周長。
5、圓的周長總是直徑的3倍多一些,這個(gè)比值是一個(gè)固定的數(shù)。我們把圓的周長和直徑的比值叫做圓周率,用字母π表示。圓周率是一個(gè)無限不循環(huán)小數(shù)。在計(jì)算時(shí),取π≈3.14。世界上第一個(gè)把圓周率算出來的人是我國的數(shù)學(xué)家祖沖之。
6、圓的周長公式:C=πd或C=2πr
7、圓的面積:圓所占平面的大小叫圓的面積。
8、把一個(gè)圓割成一個(gè)近似的長方形,割拼成的長方形的長相當(dāng)于圓周長的一半,寬相當(dāng)于圓的半徑,因?yàn)殚L方形面積=長×寬,所以圓的面積=πr×r=πr2
9、圓的面積公式:S=πr2或者S=π(d÷2)2或者S=π(C÷π÷2)2
10、在一個(gè)正方形里畫一個(gè)最大的圓,圓的直徑等于正方形的邊長。圓的面積和正方形面積的比是π:4。在一個(gè)圓里畫一個(gè)最大正方形的,圓的直徑的長度等于正方形的對角線的長度,正方形的面積=對角線×對角線÷2=直徑×直徑÷2。
11、在一個(gè)長方形里畫一個(gè)最大的圓,圓的直徑等于長方形的短邊。
12、一個(gè)環(huán)形,外圓的半徑是R,內(nèi)圓的半徑是r,它的面積是S=πR2-πr2或S=π(R2-r2)。(其中R=r+環(huán)的寬度.)
13、環(huán)形的周長=外圓周長+內(nèi)圓周長
14、半圓的周長等于圓的周長的一半加直徑。半圓周長公式:C=πd÷2+d或C=πr+2r
15、半圓面積=圓面積÷2公式為:S=πr2÷2
16、在同一個(gè)圓里,半徑擴(kuò)大或縮小多少倍,直徑和周長也擴(kuò)大或縮小相同的倍數(shù)。而面積擴(kuò)大或縮小以上倍數(shù)的平方倍。例如:在同一個(gè)圓里,半徑擴(kuò)大4倍,那么直徑和周長就都擴(kuò)大4倍,而面積擴(kuò)大16倍。
17、兩個(gè)圓的半徑比等于直徑比等于周長比,而面積比等于以上比的平方。
例如:兩個(gè)圓的半徑比是2:3,那么這兩個(gè)圓的`直徑比和周長比都是2:3,而面積比是4:9。
18、當(dāng)一個(gè)圓的半徑增加a厘米時(shí),它的周長就增加2πa厘米;當(dāng)一個(gè)圓的直徑增加a厘米時(shí),它的周長就增加πa厘米。
19、在同一圓中,圓心角占圓周角的幾分之幾,它所在扇形面積就占圓面積的幾分之幾;所對的弧就占圓周長的幾分之幾.
20、當(dāng)長方形,正方形,圓的周長相等時(shí),圓的面積最大,長方形的面積最小;當(dāng)長方形,正方形,圓的面積相等時(shí),長方形的周長最大,圓的周長最小。
22、軸對稱圖形:如果一個(gè)圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個(gè)圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
23、有1一條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。有2條對稱軸的圖形是:長方形有3條對稱軸的圖形是:等邊三角形有4條對稱軸的圖形是:正方形有無數(shù)條對稱軸的圖形是:圓、圓環(huán)。
24、直徑所在的直線是圓的對稱軸。
今天的內(nèi)容就介紹到這里了。
初中圓知識點(diǎn) 篇10
圓的一般方程
圓的標(biāo)準(zhǔn)方程是一個(gè)關(guān)于x和y的二次方程,將它展開并按x、y的降冪排列,得:
x+y—2ax—2by+a+b—R=0
設(shè)D=—2a,E=—2b,F(xiàn)=a+b—R;則方程變成:
x+y+Dx+Ey+F=0
任意一個(gè)圓的方程都可寫成上述形式。把它和下述的一般形式的二元二次方程比較,可以看出它有這樣的特點(diǎn):
。1)x2項(xiàng)和y2項(xiàng)的系數(shù)相等且不為0(在這里為1);
(2)沒有xy的乘積項(xiàng)。
Ax+Bxy+Cy+Dx+Ey+F=0
圓的端點(diǎn)式:
若已知兩點(diǎn)A(a1,b1),B(a2,b2),則以線段AB為直徑的圓的方程為(x—a1)(x—a2)+(y—b1)(y—b2)=0
圓的離心率e=0,在圓上任意一點(diǎn)的曲率半徑都是r。
經(jīng)過圓x+y=r上一點(diǎn)M(a0,b0)的切線方程為a0·x+b0·y=r
在圓(x+y=r)外一點(diǎn)M(a0,b0)引該圓的兩條切線,且兩切點(diǎn)為A,B,則A,B兩點(diǎn)所在直線的方程也為a0·x+b0·y=r。
圓的性質(zhì)有哪些
1、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
4、同圓或等圓的半徑相等。
圓是一種幾何圖形,指的是平面中到一個(gè)定點(diǎn)距離為定值的所有點(diǎn)的集合。這個(gè)給定的點(diǎn)稱為圓的圓心。作為定值的距離稱為圓的半徑。當(dāng)一條線段繞著它的`一個(gè)端點(diǎn)在平面內(nèi)旋轉(zhuǎn)一周時(shí),它的另一個(gè)端點(diǎn)的軌跡就是一個(gè)圓。圓的直徑有無數(shù)條;圓的對稱軸有無數(shù)條。圓的直徑是半徑的2倍,圓的半徑是直徑的一半。
用圓規(guī)畫圓時(shí),針尖所在的點(diǎn)叫做圓心,一般用字母O表示。連接圓心和圓上任意一點(diǎn)的線段叫做半徑,一般用字母r表示,半徑的長度就是圓規(guī)兩個(gè)角之間的距離。通過圓心并且兩端都在圓上的線段叫做直徑,一般用字母d表示。
初中圓知識點(diǎn) 篇11
圓的方程
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。
2、圓的方程
。1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
。2)一般方程
當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為
當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。
。3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設(shè)直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點(diǎn)的切線:
、賙不存在,驗(yàn)證是否成立
、趉存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程
。3)過圓上一點(diǎn)的切線方程:圓(x—a)2+(y—b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0—a)(x—a)+(y0—b)(y—b)=r2
4、圓與圓的.位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設(shè)圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;
當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。
注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
【初中圓知識點(diǎn)】相關(guān)文章:
初中圓的知識點(diǎn)總結(jié)07-11
初中數(shù)學(xué)圓的知識點(diǎn)03-01
初中數(shù)學(xué)圓的知識點(diǎn)總結(jié)04-12
初中數(shù)學(xué)圓的知識點(diǎn)總結(jié)12-05
初中數(shù)學(xué)知識點(diǎn)總結(jié):圓04-11
初中數(shù)學(xué)知識點(diǎn)圓總結(jié)08-02