高三數(shù)學(xué)基礎(chǔ)知識點總結(jié)分享
總結(jié)是指對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗或情況加以總結(jié)和概括的書面材料,它可以促使我們思考,不妨坐下來好好寫寫總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編幫大家整理的高三數(shù)學(xué)基礎(chǔ)知識點總結(jié)分享,希望對大家有所幫助。
高三數(shù)學(xué)基礎(chǔ)知識點總結(jié)分享1
1、圓柱體:
表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:
表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、正方體
a—邊長,S=6a2,V=a3
4、長方體
a—長,b—寬,c—高S=2(ab+ac+bc)V=abc
5、棱柱
S—底面積h—高V=Sh
6、棱錐
S—底面積h—高V=Sh/3
7、棱臺
S1和S2—上、下底面積h—高V=h[S1+S2+(S1S2)^1/2]/3
8、擬柱體
S1—上底面積,S2—下底面積,S0—中截面積
h—高,V=h(S1+S2+4S0)/6
9、圓柱
r—底半徑,h—高,C—底面周長
S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr
S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱
R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)
11、直圓錐
r—底半徑h—高V=πr^2h/3
12、圓臺
r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/3
13、球
r—半徑d—直徑V=4/3πr^3=πd^3/6
14、球缺
h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3
15、球臺
r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體
R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑
V=2π2Rr2=π2Dd2/4
17、桶狀體
D—桶腹直徑d—桶底直徑h—桶高
V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
高三數(shù)學(xué)基礎(chǔ)知識點總結(jié)分享2
1、定義:
用符號〉,=,〈號連接的式子叫不等式。
2、性質(zhì):
、俨坏仁降膬蛇叾技由匣驕p去同一個整式,不等號方向不變。
、诓坏仁降膬蛇叾汲艘曰蛘叱砸粋正數(shù),不等號方向不變。
、鄄坏仁降膬蛇叾汲艘曰虺酝粋負數(shù),不等號方向相反。
3、分類:
、僖辉淮尾坏仁剑鹤笥覂蛇叾际钦,只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。
、谝辉淮尾坏仁浇M:
a、關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b、一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
4、考點:
、俳庖辉淮尾坏仁剑ńM)
、诟鶕(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實際問題
③用數(shù)軸表示一元一次不等式(組)的解集
高三數(shù)學(xué)基礎(chǔ)知識點總結(jié)分享3
1、三類角的求法:
①找出或作出有關(guān)的角。
②證明其符合定義,并指出所求作的角。
、塾嬎愦笮。ń庵苯侨切,或用余弦定理)。
2、正棱柱——底面為正多邊形的直棱柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。
正棱錐的計算集中在四個直角三角形中:
3、怎樣判斷直線l與圓C的位置關(guān)系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的“垂徑定理”。
4、對線性規(guī)劃問題:
作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。
培養(yǎng)興趣是關(guān)鍵。學(xué)生對數(shù)學(xué)產(chǎn)生了興趣,自然有動力去鉆研。如何培養(yǎng)興趣呢?
(1)欣賞數(shù)學(xué)的美感
比如幾何圖形中的對稱、變換前后的不變量、概念的嚴(yán)謹(jǐn)、邏輯的嚴(yán)密……
通過對旋轉(zhuǎn)變換及其不變量的討論,我們可以證明反比例函數(shù)、“對勾函數(shù)”的圖象都是雙曲線——平面上到兩個定點的距離之差的絕對值為定值(小于兩個定點之間的距離)的點的集合。
(2)注意到數(shù)學(xué)在實際生活中的應(yīng)用。
例如和日常生活息息相關(guān)的等額本金、等額本息兩種不同的還款方式,用數(shù)列的知識就可以理解、學(xué)好數(shù)學(xué),是現(xiàn)代公民的基本素養(yǎng)之一啊
(3)采用靈活的教學(xué)手段,與時俱進。
利用多種技術(shù)手段,聲、光、電多管齊下,老師可以借此把一些知識講得更具體形象,學(xué)生也更容易接受,理解更深。
。4)適當(dāng)看一些科普類的書籍和文章。
比如:學(xué)圓錐曲線的時候,可以看看一些建筑物的外形,它們被平面所截出的曲線往往就是各種圓錐曲線,很多文章對此都有介紹;還有圓錐曲線光學(xué)性質(zhì)的應(yīng)用,這方面的文章也不少。
高三數(shù)學(xué)基礎(chǔ)知識點總結(jié)分享4
考點一:集合與簡易邏輯
集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關(guān)系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學(xué)解題過程和邏輯推理。
考點二:函數(shù)與導(dǎo)數(shù)
函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。
考點三:三角函數(shù)與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點”題型、
考點四:數(shù)列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會在小題中設(shè)置1到2道題。對不等式的'工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進行考查、在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目、
考點五:立體幾何與空間向量
一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個客觀題和一個解答題,多為中檔題。
考點六:解析幾何
一般有1~2個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等。
考點七:算法復(fù)數(shù)推理與證明
高考對算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”、考查的熱點是流程圖的識別與算法語言的閱讀理解、算法與數(shù)列知識的網(wǎng)絡(luò)交匯命題是考查的主流、復(fù)數(shù)考查的重點是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的代數(shù)形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大、推理證明部分命題的方向主要會在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數(shù)學(xué)歸納法可能作為解答題的一小問、
高三數(shù)學(xué)基礎(chǔ)知識點總結(jié)分享5
一、函數(shù)的定義域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被開方數(shù)大于等于零;
3、對數(shù)的真數(shù)大于零;
4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;
5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;
6、如果函數(shù)是由實際意義確定的解析式,應(yīng)依據(jù)自變量的實際意義確定其取值范圍。
二、函數(shù)的解析式的常用求法:
1、定義法;
2、換元法;
3、待定系數(shù)法;
4、函數(shù)方程法;
5、參數(shù)法;
6、配方法
三、函數(shù)的值域的常用求法:
1、換元法;
2、配方法;
3、判別式法;
4、幾何法;
5、不等式法;
6、單調(diào)性法;
7、直接法
四、函數(shù)的最值的常用求法:
1、配方法;
2、換元法;
3、不等式法;
4、幾何法;
5、單調(diào)性法
五、函數(shù)單調(diào)性的常用結(jié)論:
1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個區(qū)間上也為增(減)函數(shù)。
2、若f(x)為增(減)函數(shù),則—f(x)為減(增)函數(shù)。
3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。
4、奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反。
5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。
六、函數(shù)奇偶性的常用結(jié)論:
1、如果一個奇函數(shù)在x=0處有定義,則f(0)=0,如果一個函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)。
2、兩個奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。
3、一個奇函數(shù)與一個偶函數(shù)的積(商)為奇函數(shù)。
4、兩個函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個函數(shù)都是奇函數(shù)時,該復(fù)合函數(shù)是奇函數(shù)。
5、若函數(shù)f(x)的定義域關(guān)于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(—x)]+1/2[f(x)+f(—x)],該式的特點是:右端為一個奇函數(shù)和一個偶函數(shù)的和。
【高三數(shù)學(xué)基礎(chǔ)知識點總結(jié)分享】相關(guān)文章:
寫作基礎(chǔ)方法分享06-01
高三數(shù)學(xué)基礎(chǔ)差怎么辦數(shù)學(xué)如何惡補有效10-12
基礎(chǔ)寫作心得分享02-03
有關(guān)分享的高三作文12-23
優(yōu)秀數(shù)學(xué)教學(xué)課件分享09-12
英語寫作基礎(chǔ)知識點12-09
高三數(shù)學(xué)教師的教學(xué)總結(jié)12-17