男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

數(shù)學(xué)必修二第二章知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-12-30 18:10:07 海潔 總結(jié) 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)必修二第二章知識(shí)點(diǎn)總結(jié)

  總結(jié)是事后對(duì)某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書(shū)面材料,它可以促使我們思考,不如立即行動(dòng)起來(lái)寫(xiě)一份總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?下面是小編為大家整理的數(shù)學(xué)必修二第二章知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來(lái)看看吧。

數(shù)學(xué)必修二第二章知識(shí)點(diǎn)總結(jié)

  數(shù)學(xué)必修二第二章知識(shí)點(diǎn)總結(jié) 1

  直線與平面有幾種位置關(guān)系

  直線與平面的關(guān)系有3種:直線在平面上,直線與平面相交,直線與平面平行。其中直線與平面相交,又分為直線與平面斜交和直線與平面垂直兩個(gè)子類。

  直線在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn);直線與平面相交——有且只有一個(gè)公共點(diǎn);直線與平面平行——沒(méi)有公共點(diǎn)。直線與平面相交和平行統(tǒng)稱為直線在平面外。

  直線與平面垂直的判定:如果直線L與平面α內(nèi)的任意一直線都垂直,我們就說(shuō)直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。

  線面平行:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。平面外一條直線與此平面的垂線垂直,則這條直線與此平面平行。

  直線與平面的夾角范圍

  [0,90°]或者說(shuō)是[0,π/2]這個(gè)范圍。

  當(dāng)兩條直線非垂直的相交的時(shí)候,形成了4個(gè)角,這4個(gè)角分成兩組對(duì)頂角。兩個(gè)銳角,兩個(gè)鈍角。按照規(guī)定,選擇銳角的那一對(duì)對(duì)頂角作為直線和直線的夾角。

  直線的方向向量m=(2,0,1),平面的法向量為n=(-1,1,2),m,n夾角為θ,cosθ=(m_n)/|m||n|,結(jié)果等于0.也就是說(shuō),l和平面法向量垂直,那么l平行于平面。l和平面夾角就為0°

  提高數(shù)學(xué)成績(jī)的技巧是什么

  課內(nèi)重視聽(tīng)講,課后及時(shí)復(fù)習(xí)

  接受一種新的知識(shí),主要實(shí)在課堂上進(jìn)行的,所以要重視課堂上的學(xué)習(xí)效率,找到適合自己的學(xué)習(xí)方法,上課時(shí)要跟住老師的思路,積極思考。下課之后要及時(shí)復(fù)習(xí),遇到不懂的地方要及時(shí)去問(wèn),在做作業(yè)的時(shí)候,先把老師課堂上講解的內(nèi)容回想一遍,還要牢牢的掌握公式及推理過(guò)程,盡量不要去翻書(shū)。盡量自己思考,不要急于翻看答案。還要經(jīng)常性的總結(jié)和復(fù)習(xí),把知識(shí)點(diǎn)結(jié)合起來(lái),變成自己的知識(shí)體系。

  多做題,養(yǎng)成良好的解題習(xí)慣

  要想學(xué)好數(shù)學(xué),大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數(shù)學(xué)成績(jī)。剛開(kāi)始做題的時(shí)候先以書(shū)上習(xí)題為主,答好基礎(chǔ),然后逐漸增加難度,開(kāi)拓思路,練習(xí)各種類型的解題思路,對(duì)于容易出現(xiàn)錯(cuò)誤的題型,應(yīng)該記錄下來(lái),反復(fù)加以聯(lián)系。在做題的時(shí)候應(yīng)該養(yǎng)成良好的解題習(xí)慣,集中注意力,這樣才能進(jìn)入最佳的狀態(tài),形成習(xí)慣,這樣在考試的時(shí)候才能運(yùn)用自如。

  數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)

  1.終邊與終邊相同(的終邊在終邊所在射線上).

  終邊與終邊共線(的終邊在終邊所在直線上).

  終邊與終邊關(guān)于軸對(duì)稱

  終邊與終邊關(guān)于軸對(duì)稱

  終邊與終邊關(guān)于原點(diǎn)對(duì)稱

  一般地:終邊與終邊關(guān)于角的終邊對(duì)稱.

  與的終邊關(guān)系由“兩等分各象限、一二三四”確定.

  2.弧長(zhǎng)公式:,扇形面積公式:1弧度(1rad).

  3.三角函數(shù)符號(hào)特征是:一是全正、二正弦正、三是切正、四余弦正.

  4.三角函數(shù)線的特征是:正弦線“站在軸上(起點(diǎn)在軸上)”、余弦線“躺在軸上(起點(diǎn)是原點(diǎn))”、正切線“站在點(diǎn)處(起點(diǎn)是)”.務(wù)必重視“三角函數(shù)值的大小與單位圓上相應(yīng)點(diǎn)的坐標(biāo)之間的關(guān)系,‘正弦’‘縱坐標(biāo)’、‘余弦’‘橫坐標(biāo)’、‘正切’‘縱坐標(biāo)除以橫坐標(biāo)之商’”;務(wù)必記住:?jiǎn)挝粓A中角終邊的變化與值的大小變化的關(guān)系為銳角

  5.三角函數(shù)同角關(guān)系中,平方關(guān)系的運(yùn)用中,務(wù)必重視“根據(jù)已知角的范圍和三角函數(shù)的取值,精確確定角的范圍,并進(jìn)行定號(hào)”;

  6.三角函數(shù)誘導(dǎo)公式的本質(zhì)是:奇變偶不變,符號(hào)看象限.

  7.三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”!

  角的變換主要有:已知角與特殊角的變換、已知角與目標(biāo)角的變換、角與其倍角的變換、兩角與其和差角的變換.

  8.三角函數(shù)性質(zhì)、圖像及其變換:

  (1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性

  注意:正切函數(shù)、余切函數(shù)的定義域;絕對(duì)值對(duì)三角函數(shù)周期性的影響:一般說(shuō)來(lái),某一周期函數(shù)解析式加絕對(duì)值或平方,其周期性是:弦減半、切不變.既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對(duì)值,其周期性不變;其他不定.如的周期都是,但的周期為,y=|tanx|的周期不變,問(wèn)函數(shù)y=cos|x|,,y=cos|x|是周期函數(shù)嗎?

  (2)三角函數(shù)圖像及其幾何性質(zhì):

  (3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換.

  (4)三角函數(shù)圖像的作法:三角函數(shù)線法、五點(diǎn)法(五點(diǎn)橫坐標(biāo)成等差數(shù)列)和變換法.

  9.三角形中的三角函數(shù):

  (1)內(nèi)角和定理:三角形三角和為,任意兩角和與第三個(gè)角總互補(bǔ),任意兩半角和與第三個(gè)角的半角總互余.銳角三角形三內(nèi)角都是銳角三內(nèi)角的余弦值為正值任兩角和都是鈍角任意兩邊的平方和大于第三邊的平方.

  (2)正弦定理:(R為三角形外接圓的半徑).

  (3)余弦定理:常選用余弦定理鑒定三角形的類型.

  數(shù)學(xué)必修二第二章知識(shí)點(diǎn)總結(jié) 2

  數(shù)列概念

 、贁(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個(gè)定義域?yàn)檎麛?shù)集Nx或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。

 、谟煤瘮(shù)的觀點(diǎn)認(rèn)識(shí)數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a、列表法;b、圖像法;c、解析法。其中解析法包括以通項(xiàng)公式給出數(shù)列和以遞推公式給出數(shù)列。

 、酆瘮(shù)不一定有解析式,同樣數(shù)列也并非都有通項(xiàng)公式。

  等差數(shù)列

  1、等差數(shù)列通項(xiàng)公式

  an=a1+(n—1)d

  n=1時(shí)a1=S1

  n≥2時(shí)an=Sn—Sn—1

  an=kn+b(k,b為常數(shù))推導(dǎo)過(guò)程:an=dn+a1—d令d=k,a1—d=b則得到an=kn+b

  2、等差中項(xiàng)

  由三個(gè)數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡(jiǎn)單的等差數(shù)列。這時(shí),A叫做a與b的等差中項(xiàng)(arithmeticmean)。

  有關(guān)系:A=(a+b)÷2

  3、前n項(xiàng)和

  倒序相加法推導(dǎo)前n項(xiàng)和公式:

  Sn=a1+a2+a3+·····+an

  =a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①

  Sn=an+an—1+an—2+······+a1

  =an+(an—d)+(an—2d)+······+[an—(n—1)d]②

  由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個(gè))=n(a1+an)

  ∴Sn=n(a1+an)÷2

  等差數(shù)列的前n項(xiàng)和等于首末兩項(xiàng)的和與項(xiàng)數(shù)乘積的一半:

  Sn=n(a1+an)÷2=na1+n(n—1)d÷2

  Sn=dn2÷2+n(a1—d÷2)

  亦可得

  a1=2sn÷n—an=[sn—n(n—1)d÷2]÷n

  an=2sn÷n—a1

  有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1

  4、等差數(shù)列性質(zhì)

  一、任意兩項(xiàng)am,an的關(guān)系為:

  an=am+(n—m)d

  它可以看作等差數(shù)列廣義的通項(xiàng)公式。

  二、從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:

  a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈Nx

  三、若m,n,p,q∈Nx,且m+n=p+q,則有am+an=ap+aq

  四、對(duì)任意的k∈Nx,有

  Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…成等差數(shù)列。

  等比數(shù)列

  1、等比中項(xiàng)

  如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。

  有關(guān)系:

  注:兩個(gè)非零同號(hào)的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。

  2、等比數(shù)列通項(xiàng)公式

  an=a1xq’(n—1)(其中首項(xiàng)是a1,公比是q)

  an=Sn—S(n—1)(n≥2)

  前n項(xiàng)和

  當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

  Sn=a1(1—q’n)/(1—q)=(a1—a1xq’n)/(1—q)(q≠1)

  當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的公式為

  Sn=na1

  3、等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系

  an=a1=s1(n=1)

  an=sn—s(n—1)(n≥2)

  4、等比數(shù)列性質(zhì)

  (1)若m、n、p、q∈Nx,且m+n=p+q,則am·an=ap·aq;

 。2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。

 。3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}

  (4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項(xiàng)。

  記πn=a1·a2…an,則有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1

  另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說(shuō):一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

 。5)等比數(shù)列前n項(xiàng)之和Sn=a1(1—q’n)/(1—q)

  (6)任意兩項(xiàng)am,an的關(guān)系為an=am·q’(n—m)

 。7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。

  注意:上述公式中a’n表示a的n次方。

  數(shù)學(xué)三角形斜邊計(jì)算公式

  斜邊是指直角三角形中最長(zhǎng)的那條邊,也指不是構(gòu)成直角的那條邊。在勾股定理中,斜邊稱作“弦”。

  三角形斜邊長(zhǎng)等于根號(hào)下兩直角邊的平方和,即斜邊c=√(a^2+b^2)

  解答過(guò)程如下:

 。1)在直角三角形中滿足勾股定理—在平面上的一個(gè)直角三角形中,兩個(gè)直角邊邊長(zhǎng)的平方加起來(lái)等于斜邊長(zhǎng)的平方。數(shù)學(xué)表達(dá)式:a2+b2=c2

 。2)a2+b2=c2求c,因?yàn)閏是一條邊,所以就是求大于0的一個(gè)根。即c=√(a2+b2)。

  在幾何中,斜邊是直角三角形的最長(zhǎng)邊,與直角相對(duì)。直角三角形的斜邊的長(zhǎng)度可以使用畢達(dá)哥拉斯定理找到,該定理表示斜邊長(zhǎng)度的平方等于另外兩邊長(zhǎng)度的平方和。例如,如果其中一方的長(zhǎng)度為3(平方,9),另一方的長(zhǎng)度為4(平方,16),那么它們的正方形加起來(lái)為25。斜邊的長(zhǎng)度為平方根25,即5。

  提高數(shù)學(xué)成績(jī)的竅門是什么

  找漏洞

  學(xué)生如何找自己學(xué)科上的漏洞呢?主要就是要在預(yù)習(xí)時(shí)找漏洞。上課學(xué)生的學(xué)習(xí)目標(biāo)明確,注意力才會(huì)集中,聽(tīng)課效率才會(huì)高。除了預(yù)習(xí),做題也是一種很好的找漏洞的方式。

  多做題不等于提高分?jǐn)?shù),只有多補(bǔ)漏洞,才能提高分?jǐn)?shù)

  題目千千萬(wàn),我們是做不完的。做題的是為了掌握、鞏固知識(shí)點(diǎn),如果已經(jīng)掌握了,就沒(méi)有必要再做了。學(xué)生應(yīng)該把時(shí)間放在補(bǔ)漏洞上,預(yù)習(xí)也要引起高度重視。

  不要輕易放過(guò)一道錯(cuò)題

  對(duì)于學(xué)生錯(cuò)誤的習(xí)題,教師會(huì)講評(píng)一遍,學(xué)生更正一遍之后就了事,但這種態(tài)度是不正確的。從哪里倒下就在哪里爬起來(lái),“錯(cuò)題是個(gè)寶,天天少不了,每天都在找,積累為大考!边@就要求學(xué)生反思三點(diǎn),一、問(wèn)題到底出在哪里?二、產(chǎn)生錯(cuò)誤的根本是什么?三、如何做才能避免下次犯同樣的錯(cuò)誤?如果每道錯(cuò)題都利用好的,還怕成績(jī)不能提高嗎?

  落實(shí)的關(guān)鍵是檢測(cè)和重復(fù)

  落實(shí)就是硬道理?醋约貉a(bǔ)漏洞的效果如何最好的方式就是檢測(cè),多次檢測(cè)沒(méi)有問(wèn)題了,那么這個(gè)漏洞就不上了。補(bǔ)漏洞也不是一次、兩次就能解決,需要一定的重復(fù)。

  既要“亡羊補(bǔ)牢”,更要“未雨綢繆”

  考試后,教師逐題分析錯(cuò)題、失分原因——找漏洞;制定切實(shí)有效的改進(jìn)措施——想辦法;有針對(duì)性地加強(qiáng)專項(xiàng)訓(xùn)練——補(bǔ)漏洞。有時(shí)“亡羊補(bǔ)牢”已經(jīng)晚了,我們更應(yīng)該“未雨綢繆”。每天把學(xué)習(xí)上的問(wèn)題記錄下來(lái)并解決落實(shí)好?记暗哪M測(cè)試,也是一個(gè)好辦法。

  數(shù)學(xué)必修二第二章知識(shí)點(diǎn)總結(jié) 3

  1.向量可以形象化地表示為帶箭頭的線段。箭頭所指:代表向量的方向;線段長(zhǎng)度:代表向量的大小。

  2.規(guī)定若線段AB的端點(diǎn)A為起點(diǎn),B為終點(diǎn),則線段就具有了從起點(diǎn)A到終點(diǎn)B的方向和長(zhǎng)度。具有方向和長(zhǎng)度的線段叫做有向線段。

  3.向量的模:向量的大小,也就是向量的長(zhǎng)度(或稱模)。向量a的模記作|a|。

  注:向量的模是非負(fù)實(shí)數(shù),是可以比較大小的。因?yàn)榉较虿荒鼙容^大小,所以向量也就不能比較大小。對(duì)于向量來(lái)說(shuō)“大于”和“小于”的概念是沒(méi)有意義的。

  4.單位向量:長(zhǎng)度為一個(gè)單位(即模為1)的向量,叫做單位向量.與向量a同向,且長(zhǎng)度為單位1的向量,叫做a方向上的單位向量,記作a0。

  5.長(zhǎng)度為0的向量叫做零向量,記作0。零向量的始點(diǎn)和終點(diǎn)重合,所以零向量沒(méi)有確定的方向,或說(shuō)零向量的方向是任意的。

  向量的計(jì)算

  1.加法

  交換律:a+b=b+a;

  結(jié)合律:(a+b)+c=a+(b+c)。

  2.減法

  如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0

  加減變換律:a+(-b)=a-b

  3.數(shù)量積

  定義:已知兩個(gè)非零向量a,b。作OA=a,OB=b,則∠AOB稱作向量a和向量b的夾角,記作θ并規(guī)定0≤θ≤π

  向量的數(shù)量積的運(yùn)算律

  a·b=b·a(交換律)

  (λa)·b=λ(a·b)(關(guān)于數(shù)乘法的結(jié)合律)

  (a+b)·c=a·c+b·c(分配律)

  向量的數(shù)量積的性質(zhì)

  a·a=|a|的平方。

  a⊥b〈=〉a·b=0。

  |a·b|≤|a|·|b|。(該公式證明如下:|a·b|=|a|·|b|·|cosα| 因?yàn)?≤|cosα|≤1,所以|a·b|≤|a|·|b|)

  高中學(xué)好數(shù)學(xué)的方法是什么

  數(shù)學(xué)需要沉下心去做,浮躁的人很難學(xué)好數(shù)學(xué),踏踏實(shí)實(shí)做題才是硬道理。

  數(shù)學(xué)要想學(xué)好,不琢磨是行不通的,遇到難題不能躲,研究明白了才能罷休。

  數(shù)學(xué)最主要的就是解題過(guò)程,懂得數(shù)學(xué)思維很關(guān)鍵,思路通了,數(shù)學(xué)自然就會(huì)了。

  數(shù)學(xué)不是用來(lái)看的,而是用來(lái)算的,或許這一秒沒(méi)思路,當(dāng)你拿起筆開(kāi)始計(jì)算的那一秒,就豁然開(kāi)朗了。

  數(shù)學(xué)題目不會(huì)做,原因之一就是例題沒(méi)研究明白,所以數(shù)學(xué)書(shū)上的例題絕對(duì)不要放過(guò)。

  數(shù)學(xué)函數(shù)的奇偶性知識(shí)點(diǎn)

  1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).

  正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).

  2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡(jiǎn)或應(yīng)用定義的等價(jià)形式。

【數(shù)學(xué)必修二第二章知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高二必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-08

高二數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié)07-17

高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)06-15

新教材數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)07-22

高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-08

高中數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)09-17

高一生物必修一第二章知識(shí)點(diǎn)總結(jié)06-01

數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)07-18

數(shù)學(xué)高考必修知識(shí)點(diǎn)總結(jié)11-02

數(shù)學(xué)必修四知識(shí)點(diǎn)總結(jié)10-30