初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(15篇)
總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),它能使我們及時(shí)找出錯(cuò)誤并改正,因此,讓我們寫一份總結(jié)吧。那么你知道總結(jié)如何寫嗎?以下是小編整理的初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
初一下冊(cè)知識(shí)點(diǎn)總結(jié)
1.同底數(shù)冪的乘法:am?an=am+n ,底數(shù)不變,指數(shù)相加。
2.同底數(shù)冪的除法:am÷an=am-n ,底數(shù)不變,指數(shù)相減。
3.冪的乘方與積的乘方:(am)n=amn ,底數(shù)不變,指數(shù)相乘; (ab)n=anbn ,積的乘方等于各因式乘方的積。
4.零指數(shù)與負(fù)指數(shù)公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2無意義。
(2)有了負(fù)指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)= a2-b2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差;
(2)完全平方公式:
① (a+b)2=a2+2ab+b2, 兩個(gè)數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;
、 (a-b)2=a2-2ab+b2 , 兩個(gè)數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.配方:
(1)若二次三項(xiàng)式x2+px+q是完全平方式,則有關(guān)系式: ;
※ (2)二次三項(xiàng)式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式。
注意:當(dāng)x=h時(shí),可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡稱單項(xiàng)式的系數(shù);
系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù)。
8.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);
多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);
注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個(gè)二次三項(xiàng)式。
9.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng)。
10.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的`指數(shù)不變。
11.去(添)括號(hào)法則:去(添)括號(hào)時(shí),若括號(hào)前邊是“+”號(hào),括號(hào)里的各項(xiàng)都不變號(hào);若括號(hào)前邊是“-”號(hào),括號(hào)里的各項(xiàng)都要變號(hào)。
注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列。
平面幾何部分
1、補(bǔ)角重要性質(zhì):同角或等角的補(bǔ)角相等.
余角重要性質(zhì):同角或等角的余角相等.
2、①直線公理:過兩點(diǎn)有且只有一條直線.
線段公理:兩點(diǎn)之間線段最短.
、谟嘘P(guān)垂線的定理:(1)過一點(diǎn)有且只有一條直線與已知直線垂直;
(2)直線外一點(diǎn)與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短.
比例尺:比例尺1:m中,1表示圖上距離,m表示實(shí)際距離,若圖上1厘米,表示實(shí)際距離m厘米.
3、三角形的內(nèi)角和等于180
三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和
三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角
4、n邊形的對(duì)角線公式:
各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形
5、n邊形的內(nèi)角和公式:180(n-2); 多邊形的外角和等于360
6、判斷三條線段能否組成三角形:
、賏+b>c(a b為最短的兩條線段)②a-b
7、第三邊取值范圍:
a-b< c
8、對(duì)應(yīng)周長取值范圍:
若兩邊分別為a,b則周長的取值范圍是 2a
如兩邊分別為5和7則周長的取值范圍是 14
9、相關(guān)命題:
(1) 三角形中最多有1個(gè)直角或鈍角,最多有3個(gè)銳角,最少有2個(gè)銳角。
(2) 銳角三角形中最大的銳角的取值范圍是60≤X<90 。最大銳角不小于60度。
(3)任意一個(gè)三角形兩角平分線的夾角=90+第三角的一半。
(4) 鈍角三角形有兩條高在外部。
(5) 全等圖形的大小(面積、周長)、形狀都相同。
(6) 面積相等的兩個(gè)三角形不一定是全等圖形。
(7) 三角形具有穩(wěn)定性。
(8) 角平分線到角的兩邊距離相等。
(9)有一個(gè)角是60的等腰三角形是等邊三角形。
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù),整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).
注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的.分類:①②
(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
知識(shí)點(diǎn)、概念總結(jié)
1.不等式:用符號(hào)"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。
2.不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號(hào)、小于號(hào)">","<"連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))"≥","≤"連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4.不等式的解集:一個(gè)含有未知數(shù)的不等式的.所有解,組成這個(gè)不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡單的不等式表達(dá)出來,例如:x-1≤2的解集是x≤3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)
(2)如果不等式F(x) (3)如果不等式F(x) 7.不等式的性質(zhì): (1)如果x>y,那么yy;(對(duì)稱性) (2)如果x>y,y>z;那么x>z;(傳遞性) (3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則) (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z (6)如果x>y,m>n,那么x+m>y+n(充分不必要條件) (7)如果x>y>0,m>n>0,那么xm>yn (8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù)) 8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。 9.解一元一次不等式的一般順序: (1)去分母(運(yùn)用不等式性質(zhì)2、3) (2)去括號(hào) (3)移項(xiàng)(運(yùn)用不等式性質(zhì)1) (4)合并同類項(xiàng) (5)將未知數(shù)的系數(shù)化為1(運(yùn)用不等式性質(zhì)2、3) (6)有些時(shí)候需要在數(shù)軸上表示不等式的解集 10.一元一次不等式與一次函數(shù)的綜合運(yùn)用: 一般先求出函數(shù)表達(dá)式,再化簡不等式求解。 11.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成 了一個(gè)一元一次不等式組。 12.解一元一次不等式組的步驟: (1)求出每個(gè)不等式的解集; (2)求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸) (3)用代數(shù)符號(hào)語言來表示公共部分。(也可以說成是下結(jié)論) 13.解不等式的訣竅 (1)大于大于取大的(大大大); 例如:X>-1,X>2,不等式組的解集是X>2 (2)小于小于取小的(小小小); 例如:X<-4,X<-6,不等式組的解集是X<-6 (3)大于小于交叉取中間; (4)無公共部分分開無解了; 14.解不等式組的口訣 (1)同大取大 例如,x>2,x>3,不等式組的解集是X>3 (2)同小取小 例如,x<2,x<3,不等式組的解集是X<2 (3)大小小大中間找 例如,x<2,x>1,不等式組的解集是1 (4)大大小小不用找 例如,x<2,x>3,不等式組無解 15.應(yīng)用不等式組解決實(shí)際問題的步驟 (1)審清題意 (2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組 (3)解不等式組 (4)由不等式組的解確立實(shí)際問題的解 (5)作答 16.用不等式組解決實(shí)際問題:其公共解不一定就為實(shí)際問題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。 平面直角坐標(biāo)系 1.定義:平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上方向?yàn)檎较?兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。 2.平面上的任意一點(diǎn)都可以用一個(gè)有序數(shù)對(duì)來表示,記為(a,b),a是橫坐標(biāo),b是縱坐標(biāo)。 3.原點(diǎn)的坐標(biāo)是(0,0); 縱坐標(biāo)相同的點(diǎn)的連線平行于x軸; 橫坐標(biāo)相同的點(diǎn)的連線平行于y軸; x軸上的點(diǎn)的縱坐標(biāo)為0,表示為(x,0); y軸上的點(diǎn)的橫坐標(biāo)為0,表示為(0,y)。 4.建立了平面直角坐標(biāo)系以后,坐標(biāo)平面就被兩條坐標(biāo)軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個(gè)部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標(biāo)軸上的點(diǎn)不屬于任何象限。 5.幾個(gè)象限內(nèi)點(diǎn)的特點(diǎn): 第一象限(+,+);第二象限(—,+); 第三象限(—,—);第四象限(+,—)。 6.(x,y)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)是(—x,—y); (x,y)關(guān)于x軸對(duì)稱的點(diǎn)是(x,—y); (x,y)關(guān)于y軸對(duì)稱的點(diǎn)是(—x,y)。 7.點(diǎn)到兩軸的距離:點(diǎn)P(x,y)到x軸的距離是︱y︳; 點(diǎn)P(x,y)到y(tǒng)軸的距離是︱x︳。 8.在第一、三象限角平分線上的點(diǎn)的坐標(biāo)是(m,m); 在第二、四象限叫平分線上的點(diǎn)的坐標(biāo)是(m,—m)。 不等式與不等式組 (1)不等式 用不等號(hào)(<,>,≥,≤,≠)連接的式子叫做不等式。 (2)不等式的性質(zhì) 、賹(duì)稱性; ②傳遞性; 、奂臃▎握{(diào)性,即同向不等式可加性; 、艹朔▎握{(diào)性; 、萃蛘挡坏仁娇沙诵; ⑥正值不等式可乘方; 、哒挡坏仁娇砷_方; (3)一元一次不等式 用不等號(hào)連接的,含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)都是1,未知數(shù)的系數(shù)不為0,左右兩邊為整式的式子叫做一元一次不等式。 (4)一元一次不等式組 一元一次不等式組是由幾個(gè)含有同一個(gè)未知數(shù)的一元一次不等式組成的不等式組。 點(diǎn)、線、面、體知識(shí)點(diǎn) 1.幾何圖形的組成 點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。 線:面和面相交的地方是線,分為直線和曲線。 面:包圍著體的是面,分為平面和曲面。 體:幾何體也簡稱體。 2.點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。 點(diǎn)、直線、射線和線段的`表示 在幾何里,我們常用字母表示圖形。 一個(gè)點(diǎn)可以用一個(gè)大寫字母表示。 一條直線可以用一個(gè)小寫字母表示。 一條射線可以用端點(diǎn)和射線上另一點(diǎn)來表示。 一條線段可用它的端點(diǎn)的兩個(gè)大寫字母來表示。 注意: (1)表示點(diǎn)、直線、射線、線段時(shí),都要在字母前面注明點(diǎn)、直線、射線、線段。 (2)直線和射線無長度,線段有長度。 (3)直線無端點(diǎn),射線有一個(gè)端點(diǎn),線段有兩個(gè)端點(diǎn)。 (4)點(diǎn)和直線的位置關(guān)系有線面兩種: ①點(diǎn)在直線上,或者說直線經(jīng)過這個(gè)點(diǎn)。 、邳c(diǎn)在直線外,或者說直線不經(jīng)過這個(gè)點(diǎn)。 角的種類 銳角:大于0°,小于90°的角叫做銳角。 直角:等于90°的角叫做直角。 鈍角:大于90°而小于180°的角叫做鈍角。 平角:等于180°的角叫做平角。 優(yōu)角:大于180°小于360°叫優(yōu)角。 劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。 周角:等于360°的角叫做周角。 負(fù)角:按照順時(shí)針方向旋轉(zhuǎn)而成的角叫做負(fù)角。 正角:逆時(shí)針旋轉(zhuǎn)的角為正角。 0角:等于零度的角。 余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。 對(duì)頂角:兩條直線相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長線,這樣的兩個(gè)角叫做互為對(duì)頂角。兩條直線相交,構(gòu)成兩對(duì)對(duì)頂角;閷(duì)頂角的兩個(gè)角相等。 還有許多種角的關(guān)系,如內(nèi)錯(cuò)角,同位角,同旁內(nèi)角(三線八角中,主要用來判斷平行)。 第一章有理數(shù) 1、大于0的數(shù)是正數(shù)。 2、有理數(shù)分類:正有理數(shù)、0、負(fù)有理數(shù)。 3、有理數(shù)分類:整數(shù)(正整數(shù)、0、負(fù)整數(shù))、分?jǐn)?shù)(正分?jǐn)?shù)、負(fù)分?jǐn)?shù)) 4、規(guī)定了原點(diǎn),單位長度,正方向的直線稱為數(shù)軸。 5、數(shù)的大小比較: ①正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。 、趦蓚(gè)負(fù)數(shù)比較,絕對(duì)值大的反而小。 6、只有符號(hào)不同的兩個(gè)數(shù)稱互為相反數(shù)。 7、若a+b=0,則a,b互為相反數(shù) 8、表示數(shù)a的點(diǎn)到原點(diǎn)的距離稱為數(shù)a的絕對(duì)值 9、絕對(duì)值的三句:正數(shù)的絕對(duì)值是它本身, 負(fù)數(shù)的絕對(duì)值是它的相反數(shù), 0的絕對(duì)值是0。 10、有理數(shù)的計(jì)算:先算符號(hào)、再算數(shù)值。 11、加減: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О) 12、乘除:同號(hào)得正,異號(hào)的負(fù) 13、乘方:表示n個(gè)相同因數(shù)的乘積。 14、負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。 15、混合運(yùn)算:先乘方,再乘除,后加減,同級(jí)運(yùn)算從左到右,有括號(hào)的先算括號(hào)。 16、科學(xué)計(jì)數(shù)法:用ax10n 表示一個(gè)數(shù)。(其中a是整數(shù)數(shù)位只有一位的數(shù)) 17、左邊第一個(gè)非零的數(shù)字起,所有的數(shù)字都是有效數(shù)字。 【知識(shí)梳理】 1.數(shù)軸:數(shù)軸三要素:原點(diǎn),正方向和單位長度;數(shù)軸上的點(diǎn)與實(shí)數(shù)是一一對(duì)應(yīng)的。 2.相反數(shù)實(shí)數(shù)a的相反數(shù)是-a;若a與b互為相反數(shù),則有a+b=0,反之亦然;幾何意義:在數(shù)軸上,表示相反數(shù)的兩個(gè)點(diǎn)位于原點(diǎn)的兩側(cè),并且到原點(diǎn)的距離相等。 3.倒數(shù):若兩個(gè)數(shù)的積等于1,則這兩個(gè)數(shù)互為倒數(shù)。 4.絕對(duì)值:代數(shù)意義:正數(shù)的絕對(duì)值是它本身,負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0; 幾何意義:一個(gè)數(shù)的絕對(duì)值,就是在數(shù)軸上表示這個(gè)數(shù)的'點(diǎn)到原點(diǎn)的距離. 5.科學(xué)記數(shù)法:,其中。 6.實(shí)數(shù)大小的比較:利用法則比較大小;利用數(shù)軸比較大小。 7.在實(shí)數(shù)范圍內(nèi),加、減、乘、除、乘方運(yùn)算都可以進(jìn)行,但開方運(yùn)算不一定能行,如負(fù)數(shù)不能開偶次方。實(shí)數(shù)的運(yùn)算基礎(chǔ)是有理數(shù)運(yùn)算,有理數(shù)的一切運(yùn)算性質(zhì)和運(yùn)算律都適用于實(shí)數(shù)運(yùn)算。正確的確定運(yùn)算結(jié)果的符號(hào)和靈活的使用運(yùn)算律是掌握好實(shí)數(shù)運(yùn)算的關(guān)鍵。 初一數(shù)學(xué)二單元知識(shí)點(diǎn)歸納 (一)正負(fù)數(shù) 1.正數(shù):大于0的數(shù)。 2.負(fù)數(shù):小于0的數(shù)。 3.0即不是正數(shù)也不是負(fù)數(shù)。 4.正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。 (二)有理數(shù) 1.有理數(shù):由整數(shù)和分?jǐn)?shù)組成的數(shù)。包括:正整數(shù)、0、負(fù)整數(shù),正分?jǐn)?shù)、負(fù)分?jǐn)?shù)。可以寫成兩個(gè)整之比的形式。(無理數(shù)是不能寫成兩個(gè)整數(shù)之比的形式,它寫成小數(shù)形式,小數(shù)點(diǎn)后的數(shù)字是無限不循環(huán)的。如:π) 2.整數(shù):正整數(shù)、0、負(fù)整數(shù),統(tǒng)稱整數(shù)。 3.分?jǐn)?shù):正分?jǐn)?shù)、負(fù)分?jǐn)?shù)。 (三)數(shù)軸 1.數(shù)軸:用直線上的點(diǎn)表示數(shù),這條直線叫做數(shù)軸。(畫一條直線,在直線上任取一點(diǎn)表示數(shù)0,這個(gè)零點(diǎn)叫做原點(diǎn),規(guī)定直線上從原點(diǎn)向右或向上為正方向;選取適當(dāng)?shù)拈L度為單位長度,以便在數(shù)軸上取點(diǎn)。) 2.數(shù)軸的三要素:原點(diǎn)、正方向、單位長度。 3.相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。0的相反數(shù)還是0。 4.絕對(duì)值:正數(shù)的絕對(duì)值是它本身,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0,兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。 (四)有理數(shù)的加減法 1.先定符號(hào),再算絕對(duì)值。 2.加法運(yùn)算法則:同號(hào)相加,到相同符號(hào),并把絕對(duì)值相加。異號(hào)相加,取絕對(duì)值大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;橄喾磾(shù)的兩個(gè)數(shù)相加得0。一個(gè)數(shù)同0相加減,仍得這個(gè)數(shù)。 3.加法交換律:a+b=b+a兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。 4.加法結(jié)合律:(a+b)+c=a+(b+c)三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。5.a?b=a+(?b)減去一個(gè)數(shù),等于加這個(gè)數(shù)的相反數(shù)。 (五)有理數(shù)乘法(先定積的符號(hào),再定積的大小) 1.同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。任何數(shù)同0相乘,都得0。 2.乘積是1的兩個(gè)數(shù)互為倒數(shù)。 3.乘法交換律:ab=ba 4.乘法結(jié)合律:(ab)c=a(bc) 5.乘法分配律:a(b+c)=ab+ac (六)有理數(shù)除法 1.先將除法化成乘法,然后定符號(hào),最后求結(jié)果。 2.除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。 3.兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除,0除以任何一個(gè)不等于0的數(shù),都得0。(七)乘方1.求n個(gè)相同因數(shù)的積的運(yùn)算,叫做乘方。寫作an。(乘方的結(jié)果叫冪,a叫底數(shù),n叫指數(shù))2.負(fù)數(shù)的奇數(shù)次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù);0的任何正整數(shù)次冪都是0。3.同底數(shù)冪相乘,底不變,指數(shù)相加。 4.同底數(shù)冪相除,底不變,指數(shù)相減。 (八)有理數(shù)的加減乘除混合運(yùn)算法則 1.先乘方,再乘除,最后加減。 2.同級(jí)運(yùn)算,從左到右進(jìn)行。 3.如有括號(hào),先做括號(hào)內(nèi)的運(yùn)算,按小括號(hào)、中括號(hào)、大括號(hào)依次進(jìn)行。 (九)科學(xué)記數(shù)法、近似數(shù)、有效數(shù)字。 一、知識(shí)梳理 知識(shí)點(diǎn)1:正、負(fù)數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、-0.03%這樣數(shù)叫做負(fù)數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負(fù)數(shù)。我們可以用正數(shù)與負(fù)數(shù)表示具有相反意義的量。 知識(shí)點(diǎn)2:有理數(shù)的概念和分類:整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。有理數(shù)的分類主要有兩種: 注:有限小數(shù)和無限循環(huán)小數(shù)都可看作分?jǐn)?shù)。 知識(shí)點(diǎn)3:數(shù)軸的概念:像下面這樣規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸。 知識(shí)點(diǎn)4:絕對(duì)值的概念: 。1)幾何意義:數(shù)軸上表示a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值,記作|a|; 。2)代數(shù)意義:一個(gè)正數(shù)的絕對(duì)值是它的本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);零的絕對(duì)值是零。 注:任何一個(gè)數(shù)的絕對(duì)值均大于或等于0(即非負(fù)數(shù)). 知識(shí)點(diǎn)5:相反數(shù)的概念: 。1)幾何意義:在數(shù)軸上分別位于原點(diǎn)的兩旁,到原點(diǎn)的距離相等的兩個(gè)點(diǎn)所表示的數(shù),叫做互為相反數(shù); (2)代數(shù)意義:符號(hào)不同但絕對(duì)值相等的兩個(gè)數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。 知識(shí)點(diǎn)6:有理數(shù)大小的比較: 有理數(shù)大小比較的基本法則:正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。 數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的大。 用絕對(duì)值進(jìn)行有理數(shù)大小的比較:兩個(gè)正數(shù),絕對(duì)值大的`正數(shù)大;兩個(gè)負(fù)數(shù),絕對(duì)值大的負(fù)數(shù)反而小。 知識(shí)點(diǎn)7:有理數(shù)加法法則: (1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加; (2)異號(hào)兩數(shù)相加,絕對(duì)值相等時(shí),和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值; (3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù). 知識(shí)點(diǎn)8:有理數(shù)加法運(yùn)算律: 加法交換律:兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。 加法結(jié)合律:三個(gè)數(shù)相加,先把前兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。 知識(shí)點(diǎn)9:有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。 知識(shí)點(diǎn)10:有理數(shù)加減混合運(yùn)算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運(yùn)算,都可以統(tǒng)一成加法運(yùn)算,然后省略括號(hào)和加號(hào),并運(yùn)用加法法則、加法運(yùn)算律進(jìn)行計(jì)算。 (1)凡能寫成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù); (2)有理數(shù)的分類: ① 整數(shù) ②分?jǐn)?shù) (3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的'數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性; (4)自然數(shù) 0和正整數(shù);a0 a是正數(shù);a0 a是負(fù)數(shù); a≥0 a是正數(shù)或0 a是非負(fù)數(shù);a≤ 0 ? a是負(fù)數(shù)或0 a是非正數(shù). 有理數(shù)比大。 (1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大; (2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小; (3)正數(shù)大于一切負(fù)數(shù); (4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小; (5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大; (6)大數(shù)-小數(shù) 0,小數(shù)-大數(shù) 0. 一、方程的有關(guān)概念 1.方程:含有未知數(shù)的等式就叫做方程. 2. 一元一次方程:只含有一個(gè)未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程. 3.方程的解:使方程中等號(hào)左右兩邊相等的未知數(shù)的值,叫做方程的解. 注:⑴ 方程的解和解方程是不同的概念,方程的'解實(shí)質(zhì)上是求得的結(jié)果,它是一個(gè)數(shù)值(或幾個(gè)數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的解的檢驗(yàn)方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計(jì)算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論. 二、等式的性質(zhì) 等式的性質(zhì)(1):等式兩邊都加上(或減去)同個(gè)數(shù)(或式子),結(jié)果仍相等. 等式的性質(zhì)(1)用式子形式表示為:如果a=b,那么a±c=b±c 等式的性質(zhì)(2):等式兩邊乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等,等式的性質(zhì)(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb 三、移項(xiàng)法則:把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng). 四、去括號(hào)法則 1. 括號(hào)外的因數(shù)是正數(shù),去括號(hào)后各項(xiàng)的符號(hào)與原括號(hào)內(nèi)相應(yīng)各項(xiàng)的符號(hào)相同. 2. 括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后各項(xiàng)的符號(hào)與原括號(hào)內(nèi)相應(yīng)各項(xiàng)的符號(hào)改變. 五、解方程的一般步驟 1. 去分母(方程兩邊同乘各分母的最小公倍數(shù)) 2. 去括號(hào)(按去括號(hào)法則和分配律) 3. 移項(xiàng)(把含有未知數(shù)的項(xiàng)移到方程一邊,其他項(xiàng)都移到方程的另一邊,移項(xiàng)要變號(hào)) 4. 合并(把方程化成ax = b (a≠0)形式) 5. 系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=a(b). 六、用方程思想解決實(shí)際問題的一般步驟 1. 審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系. 2. 設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法) 3. 列:根據(jù)題意列方程. 4. 解:解出所列方程. 5. 檢:檢驗(yàn)所求的解是否符合題意. 6. 答:寫出答案(有單位要注明答案) 1.4 有理數(shù)的乘除法 有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。任何數(shù)同0相乘,都得0。 乘積是1的兩個(gè)數(shù)互為倒數(shù)。 有理數(shù)除法法則:除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。 兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。0除以任何一個(gè)不等于0的數(shù),都得0。 mì 求n個(gè)相同因數(shù)的積的運(yùn)算,叫乘方,乘方的結(jié)果叫冪(power)。在a的n次方中,a叫做底數(shù)(base number),n叫做指數(shù)(exponent)。 負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。 把一個(gè)大于10的數(shù)表示成a×10的n次方的形式,用的就是科學(xué)計(jì)數(shù)法。 從一個(gè)數(shù)的左邊第一個(gè)非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個(gè)數(shù)的有效數(shù)字(significant digit)。 上面內(nèi)容是初中數(shù)學(xué)有理數(shù)的乘除法知識(shí)點(diǎn)總結(jié),想必大家都已經(jīng)做好筆記了,接下來還有更詳細(xì)的初中數(shù)學(xué)知識(shí)點(diǎn)盡在哦,希望同學(xué)們關(guān)注了。 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系 下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。 平面直角坐標(biāo)系 平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。 水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。 平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合 三個(gè)規(guī)定: 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。 相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。 初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成 對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。 平面直角坐標(biāo)系的構(gòu)成 在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。 通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的`掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。 初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì) 下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。 點(diǎn)的坐標(biāo)的性質(zhì) 建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。 對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。 一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。 第二章:整式的加減 1、單項(xiàng)式:;單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式 2、系數(shù):; 3、單項(xiàng)式的次數(shù):; 4、多項(xiàng)式:; 叫做多項(xiàng)式的項(xiàng);的項(xiàng)叫做常數(shù)項(xiàng)。 5、多項(xiàng)式的次數(shù):; 6、整式:; 7、同類項(xiàng):; 8、把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng); 合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并同前各同類項(xiàng)的系數(shù)的和,且字母部分不變。 9、去括號(hào):(1)如果括號(hào)外的因數(shù)是正數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相同 (2)如果括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相反 10、一般地,幾個(gè)整式相加減,如果有括號(hào)就先去括號(hào),然后再合并同類項(xiàng) 第三章:一次方程(組) 一、方程的有關(guān)概念 1、方程的'概念: (1)含有未知數(shù)的等式叫方程。 (2)在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,系數(shù)不為0,這樣的方程叫一元一次方程。 2、等式的基本性質(zhì): (1)等式兩邊同時(shí)加上(或減去)同一個(gè)代數(shù)式,所得結(jié)果仍是等式。若a=b,則a+c=b+c或a–c=b–c。 (2)等式兩邊同時(shí)乘以(或除以)同一個(gè)數(shù)(除數(shù)不能為0),所得結(jié)果仍是等式。若a=b,則ac=bc或 二、解方程 1、移項(xiàng)的有關(guān)概念: 把方程中的某一項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊,叫做移項(xiàng)。這個(gè)法則是根據(jù)等式的性質(zhì)1推出來的,是解方程的依據(jù)。把某一項(xiàng)從方程的左邊移到右邊或從右邊移到左邊,移動(dòng)的項(xiàng)一定要變號(hào)。 2、解一元一次方程的步驟: 解一元一次方程的步驟 主要依據(jù) 1、去分母 等式的性質(zhì)2 2、去括號(hào) 去括號(hào)法則、乘法分配律 3、移項(xiàng) 等式的性質(zhì)1 4、合并同類項(xiàng) 合并同類項(xiàng)法則 5、系數(shù)化為1 等式的性質(zhì)2 6、檢驗(yàn) 3、二元一次方程組 (1)將二元一次方程用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù); (2)解二元一次方程組的指導(dǎo)思想是轉(zhuǎn)化的思想; (3)解二元一次方程組的方法有:加減消元法;代入消元法; 二、列方程解應(yīng)用題 1、列方程解應(yīng)用題的一般步驟: (1)將實(shí)際問題抽象成數(shù)學(xué)問題; (2)分析問題中的已知量和未知量,找出等量關(guān)系; (3)設(shè)未知數(shù),列出方程; (4)解方程; (5)檢驗(yàn)并作答。 2、一些實(shí)際問題中的規(guī)律和等量關(guān)系: (1)幾種常用的面積公式: 長方形面積公式:S=ab,a為長,b為寬,S為面積;正方形面積公式:S=a2,a為邊長,S為面積; 梯形面積公式:S=,a,b為上下底邊長,h為梯形的高,S為梯形面積; 圓形的面積公式:,r為圓的半徑,S為圓的面積; 三角形面積公式:,a為三角形的一邊長,h為這一邊上的高,S為三角形的面積。 (2)幾種常用的周長公式: 長方形的周長:L=2(a+b),a,b為長方形的長和寬,L為周長。 正方形的周長:L=4a,a為正方形的邊長,L為周長。 圓:L=2πr,r為半徑,L為周長。 1、都是數(shù)或字母的積的式子叫做單項(xiàng)式,單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式。 2、單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。 3、一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。 4、幾個(gè)單項(xiàng)的和叫做多項(xiàng)式,其中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的`項(xiàng),不含字母的項(xiàng)叫做常數(shù)項(xiàng)。 5、多項(xiàng)式里次數(shù)項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。 6、把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng)。 合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各同類項(xiàng)的系數(shù)的和,且字母部分不變。 7、如果括號(hào)外的因數(shù)是正數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相同。 8、如果括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來的符號(hào)相反。 9、一般地,幾個(gè)整式相加減,如果有括號(hào)就先去括號(hào),然后再合并同類項(xiàng)。 第一章有理數(shù) 1、大于0的數(shù)是正數(shù)。 2、有理數(shù)分類:正有理數(shù)、0、負(fù)有理數(shù)。 3、有理數(shù)分類:整數(shù)(正整數(shù)、0、負(fù)整數(shù))、分?jǐn)?shù)(正分?jǐn)?shù)、負(fù)分?jǐn)?shù)) 4、規(guī)定了原點(diǎn),單位長度,正方向的直線稱為數(shù)軸。 5、數(shù)的大小比較: 、僬龜(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。 、趦蓚(gè)負(fù)數(shù)比較,絕對(duì)值大的反而小。 6、只有符號(hào)不同的兩個(gè)數(shù)稱互為相反數(shù)。 7、若a+b=0,則a,b互為相反數(shù) 8、表示數(shù)a的點(diǎn)到原點(diǎn)的距離稱為數(shù)a的絕對(duì)值 9、絕對(duì)值的三句:正數(shù)的絕對(duì)值是它本身, 負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0。 10、有理數(shù)的計(jì)算:先算符號(hào)、再算數(shù)值。 11、加減: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О) 12、乘除:同號(hào)得正,異號(hào)的負(fù) 13、乘方:表示n個(gè)相同因數(shù)的乘積。 14、負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。 15、混合運(yùn)算:先乘方,再乘除,后加減,同級(jí)運(yùn)算從左到右,有括號(hào)的先算括號(hào)。 16、科學(xué)計(jì)數(shù)法:用ax10n 表示一個(gè)數(shù)。(其中a是整數(shù)數(shù)位只有一位的數(shù)) 17、左邊第一個(gè)非零的數(shù)字起,所有的數(shù)字都是有效數(shù)字。 【知識(shí)梳理】 1.數(shù)軸:數(shù)軸三要素:原點(diǎn),正方向和單位長度;數(shù)軸上的點(diǎn)與實(shí)數(shù)是一一對(duì)應(yīng)的。 2.相反數(shù)實(shí)數(shù)a的相反數(shù)是-a;若a與b互為相反數(shù),則有a+b=0,反之亦然;幾何意義:在數(shù)軸上,表示相反數(shù)的兩個(gè)點(diǎn)位于原點(diǎn)的兩側(cè),并且到原點(diǎn)的距離相等。 3.倒數(shù):若兩個(gè)數(shù)的積等于1,則這兩個(gè)數(shù)互為倒數(shù)。 4.絕對(duì)值:代數(shù)意義:正數(shù)的絕對(duì)值是它本身,負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0; 幾何意義:一個(gè)數(shù)的絕對(duì)值,就是在數(shù)軸上表示這個(gè)數(shù)的點(diǎn)到原點(diǎn)的距離. 5.科學(xué)記數(shù)法:,其中。 6.實(shí)數(shù)大小的比較:利用法則比較大小;利用數(shù)軸比較大小。 7.在實(shí)數(shù)范圍內(nèi),加、減、乘、除、乘方運(yùn)算都可以進(jìn)行,但開方運(yùn)算不一定能行,如負(fù)數(shù)不能開偶次方。實(shí)數(shù)的運(yùn)算基礎(chǔ)是有理數(shù)運(yùn)算,有理數(shù)的一切運(yùn)算性質(zhì)和運(yùn)算律都適用于實(shí)數(shù)運(yùn)算。正確的確定運(yùn)算結(jié)果的符號(hào)和靈活的使用運(yùn)算律是掌握好實(shí)數(shù)運(yùn)算的關(guān)鍵。 一元一次方程知識(shí)點(diǎn) 知識(shí)點(diǎn)1:等式的概念:用等號(hào)表示相等關(guān)系的式子叫做等式. 知識(shí)點(diǎn)2:方程的概念:含有未知數(shù)的等式叫方程,方程中一定含有未知數(shù),而且必須是等式,二者缺一不可. 說明:代數(shù)式不含等號(hào),方程是用等號(hào)把代數(shù)式連接而成的式子,且其中一定要含有未知數(shù). 知識(shí)點(diǎn)3:一元一次方程的概念:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1的方程叫一元一次方程.任何形式的一元一次方程,經(jīng)變形后,總能變成形為ax=b(a≠0,a、b為已知數(shù))的形式,這種形式的方程叫一元一次方程的一般式.注意a≠0這個(gè)重要條件,它也是判斷方程是否是一元一次方程的重要依據(jù). 例2:如果(a+1) +45=0是一元一次方程,則a________,b________. 分析:一元一次方程需要滿足的條件:未知數(shù)系數(shù)不等于0,次數(shù)為1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1. 知識(shí)點(diǎn)4:等式的基本性質(zhì)(1)等式兩邊加上(或減去)同一個(gè)數(shù)或同一個(gè)代數(shù)式,所得的結(jié)果仍是等式.即若a=b,則a±m(xù)=b±m(xù). (2) 等式兩邊乘以(或除以)同一個(gè)不為0的數(shù)或代數(shù)式, 所得的結(jié)果仍是等式. 即若a=b,則am=bm.或. 此外等式還有其它性質(zhì): 若a=b,則b=a.若a=b,b=c,則a=c. 說明:等式的性質(zhì)是解方程的重要依據(jù). 例3:下列變形正確的是( ) A.如果ax=bx,那么a=b B.如果(a+1)x=a+1, 那么x=1 C.如果x=y,則x-5=5-y D.如果則 分析:利用等式的性質(zhì)解題.應(yīng)選D. 說明:等式兩邊不可能同時(shí)除以為零的數(shù)或式,這一點(diǎn)務(wù)必要引起同學(xué)們的高度重視. 知識(shí)點(diǎn)5:方程的解與解方程:使方程兩邊相等的未知數(shù)的值叫做方程的解,求方程解的過程叫解方程. 知識(shí)點(diǎn)6:關(guān)于移項(xiàng):⑴移項(xiàng)實(shí)質(zhì)是等式的基本性質(zhì)1的運(yùn)用. ⑵移項(xiàng)時(shí),一定記住要改變所移項(xiàng)的符號(hào). 知識(shí)點(diǎn)7:解一元一次方程的一般步驟:去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、將未知數(shù)的系數(shù)化為1.具體解題時(shí),有些步驟可能用不上,有些步驟可以顛倒順序,有些步驟可以合寫,以簡化運(yùn)算,要根據(jù)方程的特點(diǎn)靈活運(yùn)用. 例4:解方程 . 分析:靈活運(yùn)用一元一次方程的步驟解答本題. 解答:去分母,得9x-6=2x,移項(xiàng),得9x-2x=6,合并同類項(xiàng),得7x=6,系數(shù)化為1,得x=. 說明:去分母時(shí),易漏乘方程左、右兩邊代數(shù)式中的某些項(xiàng),如本題易錯(cuò)解為:去分母得9x-1=2x,漏乘了常數(shù)項(xiàng). 知識(shí)點(diǎn)8:方程的檢驗(yàn) 檢驗(yàn)?zāi)硵?shù)是否為原方程的解,應(yīng)將該數(shù)分別代入原方程左邊和右邊,看兩邊的值是否相等. 注意:應(yīng)代入原方程的左、右兩邊分別計(jì)算,不能代入變形后的方程的左邊和右邊. 三、一元一次方程的應(yīng)用 一元一次方程在實(shí)際生活中的應(yīng)用,是很多同學(xué)在學(xué)習(xí)一元一次方程過程中遇到的一個(gè)棘手問題.下面是對(duì)一元一次方程在實(shí)際生活中的應(yīng)用的一個(gè)專題介紹,希望能為同學(xué)們的學(xué)習(xí)提供幫助. 一、行程問題 行程問題的基本關(guān)系:路程=速度×?xí)r間, 速度=,時(shí)間=. 1.相遇問題:速度和×相遇時(shí)間=路程和 例1甲、乙二人分別從A、B兩地相向而行,甲的速度是200米/分鐘,乙的速度是300米/分鐘,已知A、B兩地相距1000米,問甲、乙二人經(jīng)過多長時(shí)間能相遇? 解:設(shè)甲、乙二人t分鐘后能相遇,則 (200+300)× t =1000, t=2. 答:甲、乙二人2鐘后能相遇. 2.追趕問題:速度差×追趕時(shí)間=追趕距離 例2甲、乙二人分別從A、B兩地同向而行,甲的速度是200米/分鐘,乙的速度是300米/分鐘,已知A、B兩地相距1000米,問幾分鐘后乙能追上甲? 解:設(shè)t分鐘后,乙能追上甲,則 (300-200)t=1000, t=10. 答:10分鐘后乙能追上甲. 3. 航行問題:順?biāo)俣?靜水速度+水流速度,逆水速度=靜水速度-水流速度. 例3甲乘小船從A地順流到B地用了3小時(shí),已知A、B兩地相距90千米.水流速度是20千米/小時(shí),求小船在靜水中的速度. 解:設(shè)小船在靜水中的速度為v,則有 (v+20)×3=90, v=10(千米/小時(shí)). 答:小船在靜水中的`速度是10千米/小時(shí). 二、工程問題 工程問題的基本關(guān)系:①工作量=工作效率×工作時(shí)間,工作效率=,工作時(shí)間=;②常把工作量看作單位1. 例4已知甲、乙二人合作一項(xiàng)工程,甲25天獨(dú)立完成,乙20天獨(dú)立完成,甲、乙二人合作5天后,甲另有事,乙再單獨(dú)做幾天才能完成? 解:設(shè)甲再單獨(dú)做x天才能完成,有 (+)×5+=1, x=11. 答:乙再單獨(dú)做11天才能完成. 三、環(huán)行問題 環(huán)行問題的基本關(guān)系:同時(shí)同地同向而行,第一次相遇:快者路程-慢者路程=環(huán)行周長.同時(shí)同地背向而行,第一次相遇:甲路程+乙路程=環(huán)形周長. 例5王叢和張?zhí)m繞環(huán)行跑道行走,跑道長400米,王叢的速度是200米/分鐘,張?zhí)m的速度是300米/分鐘,二人如從同地同時(shí)同向而行,經(jīng)過幾分鐘二人相遇? 解:設(shè)經(jīng)過t分鐘二人相遇,則 (300-200)t=400, t=4. 答:經(jīng)過4分鐘二人相遇. 四、數(shù)字問題 數(shù)字問題的基本關(guān)系:數(shù)字和數(shù)是不同的,同一個(gè)數(shù)字在不同數(shù)位上,表示的數(shù)值不同. 例6一個(gè)兩位數(shù),個(gè)位數(shù)字比十位數(shù)字小1,這個(gè)兩位數(shù)的個(gè)位十位互換后,它們的和是33,求這個(gè)兩位數(shù). 解:設(shè)原兩位數(shù)的個(gè)位數(shù)字是x,則十位數(shù)字為x+1,根據(jù)題意,得 [10(x-1)+x]+[10x+(x+1)]=33, x=1,則x+1=2. ∴這個(gè)數(shù)是21. 答:這個(gè)兩位數(shù)是21. 五、利潤問題 利潤問題的基本關(guān)系:①獲利=售價(jià)-進(jìn)價(jià)②打幾折就是原價(jià)的十分之幾 例7某商場按定價(jià)銷售某種電器時(shí),每臺(tái)獲利48元,按定價(jià)的9折銷售該電器6臺(tái)與將定價(jià)降低30元銷售該電器9臺(tái)所獲得的利潤相等,該電器每臺(tái)進(jìn)價(jià)、定價(jià)各是多少元? 解:設(shè)該電器每臺(tái)的進(jìn)價(jià)為x元,則定價(jià)為(48+x)元,根據(jù)題意,得 6[0.9(48+x)-x]=9[(48+x)-30-x] , x=162. 48+x=48+162=210. 答:該電器每臺(tái)進(jìn)價(jià)、定價(jià)各分別是162元、210元. 六、濃度問題 濃度問題的基本關(guān)系:溶液濃度=,溶液質(zhì)量=溶質(zhì)質(zhì)量+溶劑質(zhì)量,溶質(zhì)質(zhì)量=溶液質(zhì)量×溶液濃度 例8用“84”消毒液配制藥液對(duì)白色衣物進(jìn)行消毒,要求按1∶200的比例進(jìn)行稀釋.現(xiàn)要配制此種藥液4020克,則需要“84”消毒液多少克? 解:設(shè)需要“84”消毒液x克,根據(jù)題意得 =, x=20. 答:需要“84”消毒液20克. 七、等積變形問題 例1用直徑為90mm的圓柱形玻璃杯(已裝滿水,且水足夠多)向一個(gè)內(nèi)底面積為131×131mm2,內(nèi)高為81mm的長方體鐵盒倒水,當(dāng)鐵盒裝滿水時(shí),玻璃杯中水的高度下降了多少?(結(jié)果保留π) 第9 / 11頁 分析:玻璃杯里倒掉的水的體積和長方體鐵盒里所裝的水的體積相等,所以等量關(guān)系為: 玻璃杯里倒掉的水的體積=長方體鐵盒的容積. 解:設(shè)玻璃杯中水的高度下降了xmm,根據(jù)題意,得 經(jīng)檢驗(yàn),它符合題意. 八、利息問題 例2儲(chǔ)戶到銀行存款,一段時(shí)間后,銀行要向儲(chǔ)戶支付存款利息,同時(shí)銀行還將代扣由儲(chǔ)戶向國家繳納的利息稅,稅率為利息的20%. (1)將8500元錢以一年期的定期儲(chǔ)蓄存入銀行,年利率為2.2%,到期支取時(shí)可得到利息________元.扣除利息稅后實(shí)得________元. (2)小明的父親將一筆資金按一年期的定期儲(chǔ)蓄存入銀行,年利率為2.2%,到期支取時(shí),扣除所得稅后得本金和利息共計(jì)71232元,問這筆資金是多少元? (3)王紅的爸爸把一筆錢按三年期的定期儲(chǔ)蓄存入銀行,假設(shè)年利率為3%,到期支取時(shí)扣除所得稅后實(shí)得利息為432元,問王紅的爸爸存入銀行的本金是多少? 分析:利息=本金×利率×期數(shù),存幾年,期數(shù)就是幾,另外,還要注意,實(shí)得利息=利息-利息稅. 解:(1)利息=本金×利率×期數(shù)=8500×2.2%×1=187元. 實(shí)得利息 =利息×(1-20%)=187×0.8=149.6元. (2)設(shè)這筆資金為x元,依題意,有x(1+2.2%×0.8)=71232. 解方程,得x=70000. 經(jīng)檢驗(yàn),符合題意. 答:這筆資金為70000元. (3)設(shè)這筆資金為x元,依題意,得x×3×3%×(1-20%)=432. 解方程,得x=6000. 經(jīng)檢驗(yàn),符合題意. 答:這筆資金為6000元. 初一數(shù)學(xué)下冊(cè)期末考試知識(shí)點(diǎn)總結(jié)一(蘇教版) 第七章 平面圖形的認(rèn)識(shí)(二) 1 第八章 冪的運(yùn)算 2 第九章 整式的乘法與因式分解 3 第十章 二元一次方程組 4 第十一章 一元一次不等式 4 第十二章 證明 9 第七章 平面圖形的認(rèn)識(shí)(二) 一、知識(shí)點(diǎn): 1、“三線八角” 、 如何由線找角:一看線,二看型。 同位角是“F”型; 內(nèi)錯(cuò)角是“Z”型; 同旁內(nèi)角是“U”型。 、 如何由角找線:組成角的三條線中的公共直線就是截線。 2、平行公理: 如果兩條直線都和第三條直線平行,那么這兩條直線也平行。 簡述:平行于同一條直線的兩條直線平行。 補(bǔ)充定理: 如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。 簡述:垂直于同一條直線的兩條直線平行。 3、平行線的判定和性質(zhì): 判定定理 性質(zhì)定理 條件 結(jié)論 條件 結(jié)論 同位角相等 兩直線平行 兩直線平行 同位角相等 內(nèi)錯(cuò)角相等 兩直線平行 兩直線平行 內(nèi)錯(cuò)角相等 同旁內(nèi)角互補(bǔ) 兩直線平行 兩直線平行 同旁內(nèi)角互補(bǔ) 4、圖形平移的性質(zhì): 圖形經(jīng)過平移,連接各組對(duì)應(yīng)點(diǎn)所得的線段互相平行(或在同一直線上)并且相等。 5、三角形三邊之間的關(guān)系: 三角形的任意兩邊之和大于第三邊; 三角形的任意兩邊之差小于第三邊。 若三角形的三邊分別為a、b、c, 則 6、三角形中的主要線段: 三角形的高、角平分線、中線。 注意:①三角形的高、角平分線、中線都是線段。 、诟、角平分線、中線的應(yīng)用。 7、三角形的內(nèi)角和: 三角形的3個(gè)內(nèi)角的和等于180°; 直角三角形的.兩個(gè)銳角互余; 三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和; 三角形的一個(gè)外角大于與它不相鄰的任意一個(gè)內(nèi)角。 8、多邊形的內(nèi)角和: n邊形的內(nèi)角和等于(n-2)180°; 任意多邊形的外角和等于360°。 第八章 冪的運(yùn)算 冪(p5 有理數(shù) 1.1 正數(shù)與負(fù)數(shù) 在以前學(xué)過的0以外的數(shù)前面加上負(fù)號(hào)“—”的數(shù)叫負(fù)數(shù)(negative number)。 與負(fù)數(shù)具有相反意義,即以前學(xué)過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時(shí)在正數(shù)前面也加上“+”)。 1.2 有理數(shù) 正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù)(integer),正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)(fraction)。 整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)(rational number)。 通常用一條直線上的點(diǎn)表示數(shù),這條直線叫數(shù)軸(number axis)。 數(shù)軸三要素:原點(diǎn)、正方向、單位長度。 在直線上任取一個(gè)點(diǎn)表示數(shù)0,這個(gè)點(diǎn)叫做原點(diǎn)(origin)。 只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0) 數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值(absolute value),記作|a|。 一個(gè)正數(shù)的絕對(duì)值是它本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0。兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。 初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系 下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。 平面直角坐標(biāo)系 平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。 水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。 平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合 三個(gè)規(guī)定: 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。 相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。 初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成 平面直角坐標(biāo)系的構(gòu)成 在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。 通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的'內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。 初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì) 點(diǎn)的坐標(biāo)的性質(zhì) 建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。 對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。 一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。 希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績的。 初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟 因式分解的一般步驟 如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式, 通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。 注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。 相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績。 初中數(shù)學(xué)知識(shí)點(diǎn):因式分解 因式分解 因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。 因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④ 因式分解與整式乘法的關(guān)系:m(a+b+c) 公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。 公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。 提取公因式步驟: 、俅_定公因式。②確定商式③公因式與商式寫成積的形式。 分解因式注意; 、俨粶(zhǔn)丟字母 、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù) 、垭p重括號(hào)化成單括號(hào) 、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列 ⑤相同因式寫成冪的形式 、奘醉(xiàng)負(fù)號(hào)放括號(hào)外 、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。 盡快地掌握科學(xué)知識(shí),迅速提高學(xué)習(xí)能力,由編輯老師為您提供的初一年級(jí)新學(xué)期數(shù)學(xué)知識(shí)點(diǎn),希望給您帶來啟發(fā)! 一、目標(biāo)與要求 1.通過處理實(shí)際問題,讓學(xué)生體驗(yàn)從算術(shù)方法到代數(shù)方法是一種進(jìn)步; 2.初步學(xué)會(huì)如何尋找問題中的相等關(guān)系,列出方程,了解方程的概念; 3.培養(yǎng)學(xué)生獲取信息,分析問題,處理問題的能力。 二、重點(diǎn) 從實(shí)際問題中尋找相等關(guān)系; 建立列方程解決實(shí)際問題的思想方法,學(xué)會(huì)合并同類項(xiàng),會(huì)解ax+bx=c類型的一元一次方程。 三、難點(diǎn) 從實(shí)際問題中尋找相等關(guān)系; 分析實(shí)際問題中的已經(jīng)量和未知量,找出相等關(guān)系,列出方程,使學(xué)生逐步建立列方程解決實(shí)際問題的思想方法。 四、知識(shí)點(diǎn)、概念總結(jié) 1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。 2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a0)。 3.條件:一元一次方程必須同時(shí)滿足4個(gè)條件: (1)它是等式; (2)分母中不含有未知數(shù); (3)未知數(shù)最高次項(xiàng)為1; (4)含未知數(shù)的項(xiàng)的系數(shù)不為0. 4.等式的性質(zhì): 等式的性質(zhì)一:等式兩邊同時(shí)加一個(gè)數(shù)或減去同一個(gè)數(shù)或同一個(gè)整式,等式仍然成立。 等式的性質(zhì)二:等式兩邊同時(shí)擴(kuò)大或縮小相同的倍數(shù)(0除外),等式仍然成立。 等式的性質(zhì)三:等式兩邊同時(shí)乘方(或開方),等式仍然成立。 解方程都是依據(jù)等式的這三個(gè)性質(zhì)等式的性質(zhì)一:等式兩邊同時(shí)加一個(gè)數(shù)或減同一個(gè)數(shù),等式仍然成立。 5.合并同類項(xiàng) (1)依據(jù):乘法分配律 (2)把未知數(shù)相同且其次數(shù)也相同的相合并成一項(xiàng);常數(shù)計(jì)算后合并成一項(xiàng) (3)合并時(shí)次數(shù)不變,只是系數(shù)相加減。 6.移項(xiàng) (1)含有未知數(shù)的項(xiàng)變號(hào)后都移到方程左邊,把不含未知數(shù)的項(xiàng)移到右邊。 (2)依據(jù):等式的性質(zhì) (3)把方程一邊某項(xiàng)移到另一邊時(shí),一定要變號(hào)。 7.一元一次方程解法的一般步驟: 使方程左右兩邊相等的`未知數(shù)的值叫做方程的解。 一般解法: (1)去分母:在方程兩邊都乘以各分母的最小公倍數(shù); (2)去括號(hào):先去小括號(hào),再去中括號(hào),最后去大括號(hào);(記住如括號(hào)外有減號(hào)的話一定要變號(hào)) (3)移項(xiàng):把含有未知數(shù)的項(xiàng)都移到方程的一邊,其他項(xiàng)都移到方程的另一邊;移項(xiàng)要變號(hào) (4)合并同類項(xiàng):把方程化成ax=b(a0)的形式; (5)系數(shù)化成1:在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=b/a. 8.同解方程 如果兩個(gè)方程的解相同,那么這兩個(gè)方程叫做同解方程。 9.方程的同解原理: (1)方程的兩邊都加或減同一個(gè)數(shù)或同一個(gè)等式所得的方程與原方程是同解方程。 (2)方程的兩邊同乘或同除同一個(gè)不為0的數(shù)所得的方程與原方程是同解方程。 由編輯老師為您提供的初一年級(jí)新學(xué)期數(shù)學(xué)知識(shí)點(diǎn),希望給您帶來啟發(fā)! 【初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章: 數(shù)學(xué)初一知識(shí)點(diǎn)總結(jié)07-03 初一的數(shù)學(xué)知識(shí)點(diǎn)總結(jié)03-19 初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-18 初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-29 數(shù)學(xué)初一知識(shí)點(diǎn)總結(jié)經(jīng)典【15篇】07-04 初一數(shù)學(xué)下冊(cè)的知識(shí)點(diǎn)總結(jié)07-25 初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)07-11 初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)11-22初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15